Cargando…
A Novel Method Incorporating Gene Ontology Information for Unsupervised Clustering and Feature Selection
BACKGROUND: Among the primary goals of microarray analysis is the identification of genes that could distinguish between different phenotypes (feature selection). Previous studies indicate that incorporating prior information of the genes' function could help identify physiologically relevant f...
Autores principales: | Srivastava, Shireesh, Zhang, Linxia, Jin, Rong, Chan, Christina |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585795/ https://www.ncbi.nlm.nih.gov/pubmed/19052637 http://dx.doi.org/10.1371/journal.pone.0003860 |
Ejemplares similares
-
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
por: Maji, Pradipta, et al.
Publicado: (2015) -
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Correction: Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Publicado: (2015)