Cargando…
The Ras-association domain family (RASSF) members and their role in human tumourigenesis
Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in ∼ 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Elsevier Pub. Co
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586335/ https://www.ncbi.nlm.nih.gov/pubmed/17692468 http://dx.doi.org/10.1016/j.bbcan.2007.06.003 |
_version_ | 1782160888686444544 |
---|---|
author | van der Weyden, Louise Adams, David J. |
author_facet | van der Weyden, Louise Adams, David J. |
author_sort | van der Weyden, Louise |
collection | PubMed |
description | Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in ∼ 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1–8). RASSF1–6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7–8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours. |
format | Text |
id | pubmed-2586335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Elsevier Pub. Co |
record_format | MEDLINE/PubMed |
spelling | pubmed-25863352008-11-24 The Ras-association domain family (RASSF) members and their role in human tumourigenesis van der Weyden, Louise Adams, David J. Biochim Biophys Acta Review Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in ∼ 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1–8). RASSF1–6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7–8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours. Elsevier Pub. Co 2007-09 /pmc/articles/PMC2586335/ /pubmed/17692468 http://dx.doi.org/10.1016/j.bbcan.2007.06.003 Text en © 2007 Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Review van der Weyden, Louise Adams, David J. The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title | The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title_full | The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title_fullStr | The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title_full_unstemmed | The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title_short | The Ras-association domain family (RASSF) members and their role in human tumourigenesis |
title_sort | ras-association domain family (rassf) members and their role in human tumourigenesis |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586335/ https://www.ncbi.nlm.nih.gov/pubmed/17692468 http://dx.doi.org/10.1016/j.bbcan.2007.06.003 |
work_keys_str_mv | AT vanderweydenlouise therasassociationdomainfamilyrassfmembersandtheirroleinhumantumourigenesis AT adamsdavidj therasassociationdomainfamilyrassfmembersandtheirroleinhumantumourigenesis AT vanderweydenlouise rasassociationdomainfamilyrassfmembersandtheirroleinhumantumourigenesis AT adamsdavidj rasassociationdomainfamilyrassfmembersandtheirroleinhumantumourigenesis |