Cargando…

Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish

Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Zhi, Song, Jianbo, Qi, Fei, Xiao, An, An, Xizhou, Liu, Ning-ai, Zhu, Zuoyang, Zhang, Bo, Lin, Shuo
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586380/
https://www.ncbi.nlm.nih.gov/pubmed/19067490
http://dx.doi.org/10.1371/journal.pbio.0060293
_version_ 1782160894398038016
author Jiang, Zhi
Song, Jianbo
Qi, Fei
Xiao, An
An, Xizhou
Liu, Ning-ai
Zhu, Zuoyang
Zhang, Bo
Lin, Shuo
author_facet Jiang, Zhi
Song, Jianbo
Qi, Fei
Xiao, An
An, Xizhou
Liu, Ning-ai
Zhu, Zuoyang
Zhang, Bo
Lin, Shuo
author_sort Jiang, Zhi
collection PubMed
description Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell specification. We report here the identification and characterization of a novel exocrine cell determinant gene, exocrine differentiation and proliferation factor (exdpf), which is highly expressed in the exocrine cell progenitors and differentiated cells of the developing pancreas in zebrafish. Knockdown of exdpf by antisense morpholino caused loss or significant reduction of exocrine cells due to lineage-specific cell cycle arrest but not apoptosis, whereas the endocrine cell mass appeared normal. Real-time PCR results demonstrated that the cell cycle arrest is mediated by up-regulation of cell cycle inhibitor genes p21(Cip), p27(Kip), and cyclin G1 in the exdpf morphants. Conversely, overexpression of exdpf resulted in an overgrowth of the exocrine pancreas and a severe reduction of the endocrine cell mass, suggesting an inhibitory role for exdpf in endocrine cell progenitors. We show that exdpf is a direct target gene of pancreas-specific transcription factor 1a (Ptf1a), a transcription factor critical for exocrine formation. Three consensus Ptf1a binding sites have been identified in the exdpf promoter region. Luciferase assay demonstrated that Ptf1a promotes transcription of the exdpf promoter. Furthermore, exdpf expression in the exocrine pancreas was lost in ptf1a morphants, and overexpression of exdpf successfully rescued exocrine formation in ptf1a-deficient embryos. Genetic evidence places expdf downstream of retinoic acid (RA), an instructive signal for pancreas development. Knocking down exdpf by morpholino abolished ectopic carboxypeptidase A (cpa) expression induced by RA. On the other hand, exdpf mRNA injection rescued endogenous cpa expression in embryos treated with diethylaminobenzaldehyde, an inhibitor of RA signaling. Moreover, exogenous RA treatment induced anterior ectopic expression of exdpf and trypsin in a similar pattern. Our study provides a new understanding of the molecular mechanisms controlling exocrine cell specification and proliferation by a novel gene, exdpf. Highly conserved in mammals, the expression level of exdpf appears elevated in several human tumors, suggesting a possible role in tumor pathogenesis.
format Text
id pubmed-2586380
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-25863802008-11-25 Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish Jiang, Zhi Song, Jianbo Qi, Fei Xiao, An An, Xizhou Liu, Ning-ai Zhu, Zuoyang Zhang, Bo Lin, Shuo PLoS Biol Research Article Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell specification. We report here the identification and characterization of a novel exocrine cell determinant gene, exocrine differentiation and proliferation factor (exdpf), which is highly expressed in the exocrine cell progenitors and differentiated cells of the developing pancreas in zebrafish. Knockdown of exdpf by antisense morpholino caused loss or significant reduction of exocrine cells due to lineage-specific cell cycle arrest but not apoptosis, whereas the endocrine cell mass appeared normal. Real-time PCR results demonstrated that the cell cycle arrest is mediated by up-regulation of cell cycle inhibitor genes p21(Cip), p27(Kip), and cyclin G1 in the exdpf morphants. Conversely, overexpression of exdpf resulted in an overgrowth of the exocrine pancreas and a severe reduction of the endocrine cell mass, suggesting an inhibitory role for exdpf in endocrine cell progenitors. We show that exdpf is a direct target gene of pancreas-specific transcription factor 1a (Ptf1a), a transcription factor critical for exocrine formation. Three consensus Ptf1a binding sites have been identified in the exdpf promoter region. Luciferase assay demonstrated that Ptf1a promotes transcription of the exdpf promoter. Furthermore, exdpf expression in the exocrine pancreas was lost in ptf1a morphants, and overexpression of exdpf successfully rescued exocrine formation in ptf1a-deficient embryos. Genetic evidence places expdf downstream of retinoic acid (RA), an instructive signal for pancreas development. Knocking down exdpf by morpholino abolished ectopic carboxypeptidase A (cpa) expression induced by RA. On the other hand, exdpf mRNA injection rescued endogenous cpa expression in embryos treated with diethylaminobenzaldehyde, an inhibitor of RA signaling. Moreover, exogenous RA treatment induced anterior ectopic expression of exdpf and trypsin in a similar pattern. Our study provides a new understanding of the molecular mechanisms controlling exocrine cell specification and proliferation by a novel gene, exdpf. Highly conserved in mammals, the expression level of exdpf appears elevated in several human tumors, suggesting a possible role in tumor pathogenesis. Public Library of Science 2008-11 2008-11-25 /pmc/articles/PMC2586380/ /pubmed/19067490 http://dx.doi.org/10.1371/journal.pbio.0060293 Text en © 2008 Jiang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Jiang, Zhi
Song, Jianbo
Qi, Fei
Xiao, An
An, Xizhou
Liu, Ning-ai
Zhu, Zuoyang
Zhang, Bo
Lin, Shuo
Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title_full Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title_fullStr Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title_full_unstemmed Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title_short Exdpf Is a Key Regulator of Exocrine Pancreas Development Controlled by Retinoic Acid and ptf1a in Zebrafish
title_sort exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586380/
https://www.ncbi.nlm.nih.gov/pubmed/19067490
http://dx.doi.org/10.1371/journal.pbio.0060293
work_keys_str_mv AT jiangzhi exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT songjianbo exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT qifei exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT xiaoan exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT anxizhou exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT liuningai exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT zhuzuoyang exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT zhangbo exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish
AT linshuo exdpfisakeyregulatorofexocrinepancreasdevelopmentcontrolledbyretinoicacidandptf1ainzebrafish