Cargando…
The role of casein in supporting the operation of surface bound kinesin
Microtubules and associated motor proteins such as kinesin are envisioned for applications such as bioseparation and molecular sorting to powering hybrid synthetic mechanical devices. One of the challenges in realizing such systems is retaining motor functionality on device surfaces. Kinesin motors...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586618/ https://www.ncbi.nlm.nih.gov/pubmed/18937863 http://dx.doi.org/10.1186/1754-1611-2-14 |
_version_ | 1782160896774111232 |
---|---|
author | Verma, Vivek Hancock, William O Catchmark, Jeffrey M |
author_facet | Verma, Vivek Hancock, William O Catchmark, Jeffrey M |
author_sort | Verma, Vivek |
collection | PubMed |
description | Microtubules and associated motor proteins such as kinesin are envisioned for applications such as bioseparation and molecular sorting to powering hybrid synthetic mechanical devices. One of the challenges in realizing such systems is retaining motor functionality on device surfaces. Kinesin motors adsorbed onto glass surfaces lose their functionality or ability to interact with microtubules if not adsorbed with other supporting proteins. Casein, a milk protein, is commonly used in microtubule motility assays to preserve kinesin functionality. However, the mechanism responsible for this preservation of motor function is unknown. To study casein and kinesin interaction, a series of microtubule motility assays were performed where whole milk casein, or its α(s1 )and α(s2), β or κ subunits, were introduced or omitted at various steps of the motility assay. In addition, a series of epifluorescence and total internal reflection microscopy (TIRF) experiments were conducted where fluorescently labeled casein was introduced at various steps of the motility assay to assess casein-casein and casein-glass binding dynamics. From these experiments it is concluded that casein forms a bi-layer which supports the operation of kinesin. The first tightly bound layer of casein mainly performs the function of anchoring the kinesin while the second more loosely bound layer of casein positions the head domain of the kinesin to more optimally interact with microtubules. Studies on individual casein subunits indicate that β casein was most effective in supporting kinesin functionality while κ casein was found to be least effective. |
format | Text |
id | pubmed-2586618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-25866182008-11-25 The role of casein in supporting the operation of surface bound kinesin Verma, Vivek Hancock, William O Catchmark, Jeffrey M J Biol Eng Research Microtubules and associated motor proteins such as kinesin are envisioned for applications such as bioseparation and molecular sorting to powering hybrid synthetic mechanical devices. One of the challenges in realizing such systems is retaining motor functionality on device surfaces. Kinesin motors adsorbed onto glass surfaces lose their functionality or ability to interact with microtubules if not adsorbed with other supporting proteins. Casein, a milk protein, is commonly used in microtubule motility assays to preserve kinesin functionality. However, the mechanism responsible for this preservation of motor function is unknown. To study casein and kinesin interaction, a series of microtubule motility assays were performed where whole milk casein, or its α(s1 )and α(s2), β or κ subunits, were introduced or omitted at various steps of the motility assay. In addition, a series of epifluorescence and total internal reflection microscopy (TIRF) experiments were conducted where fluorescently labeled casein was introduced at various steps of the motility assay to assess casein-casein and casein-glass binding dynamics. From these experiments it is concluded that casein forms a bi-layer which supports the operation of kinesin. The first tightly bound layer of casein mainly performs the function of anchoring the kinesin while the second more loosely bound layer of casein positions the head domain of the kinesin to more optimally interact with microtubules. Studies on individual casein subunits indicate that β casein was most effective in supporting kinesin functionality while κ casein was found to be least effective. BioMed Central 2008-10-20 /pmc/articles/PMC2586618/ /pubmed/18937863 http://dx.doi.org/10.1186/1754-1611-2-14 Text en Copyright © 2008 Verma et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Verma, Vivek Hancock, William O Catchmark, Jeffrey M The role of casein in supporting the operation of surface bound kinesin |
title | The role of casein in supporting the operation of surface bound kinesin |
title_full | The role of casein in supporting the operation of surface bound kinesin |
title_fullStr | The role of casein in supporting the operation of surface bound kinesin |
title_full_unstemmed | The role of casein in supporting the operation of surface bound kinesin |
title_short | The role of casein in supporting the operation of surface bound kinesin |
title_sort | role of casein in supporting the operation of surface bound kinesin |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586618/ https://www.ncbi.nlm.nih.gov/pubmed/18937863 http://dx.doi.org/10.1186/1754-1611-2-14 |
work_keys_str_mv | AT vermavivek theroleofcaseininsupportingtheoperationofsurfaceboundkinesin AT hancockwilliamo theroleofcaseininsupportingtheoperationofsurfaceboundkinesin AT catchmarkjeffreym theroleofcaseininsupportingtheoperationofsurfaceboundkinesin AT vermavivek roleofcaseininsupportingtheoperationofsurfaceboundkinesin AT hancockwilliamo roleofcaseininsupportingtheoperationofsurfaceboundkinesin AT catchmarkjeffreym roleofcaseininsupportingtheoperationofsurfaceboundkinesin |