Cargando…
Cascaded classifiers for confidence-based chemical named entity recognition
BACKGROUND: Chemical named entities represent an important facet of biomedical text. RESULTS: We have developed a system to use character-based n-grams, Maximum Entropy Markov Models and rescoring to recognise chemical names and other such entities, and to make confidence estimates for the extracted...
Autores principales: | Corbett, Peter, Copestake, Ann |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586753/ https://www.ncbi.nlm.nih.gov/pubmed/19025690 http://dx.doi.org/10.1186/1471-2105-9-S11-S4 |
Ejemplares similares
-
Chemlistem: chemical named entity recognition using recurrent neural networks
por: Corbett, Peter, et al.
Publicado: (2018) -
Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach
por: Tarasova, O. A., et al.
Publicado: (2022) -
Chemical named entities recognition: a review on approaches and applications
por: Eltyeb, Safaa, et al.
Publicado: (2014) -
CLART: A cascaded lattice-and-radical transformer network for Chinese medical named entity recognition
por: Xiao, Yinlong, et al.
Publicado: (2023) -
ChemTok: A New Rule Based Tokenizer for Chemical Named Entity Recognition
por: Akkasi, Abbas, et al.
Publicado: (2016)