Cargando…
Evading the annotation bottleneck: using sequence similarity to search non-sequence gene data
BACKGROUND: Non-sequence gene data (images, literature, etc.) can be found in many different public databases. Access to these data is mostly by text based methods using gene names; however, gene annotation is neither complete, nor fully systematic between organisms, and is also not generally stable...
Autores principales: | Gilchrist, Michael J, Christensen, Mikkel B, Harland, Richard, Pollet, Nicolas, Smith, James C, Ueno, Naoto, Papalopulu, Nancy |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587480/ https://www.ncbi.nlm.nih.gov/pubmed/18928517 http://dx.doi.org/10.1186/1471-2105-9-442 |
Ejemplares similares
-
Homology Induction: the use of machine learning to improve sequence similarity searches
por: Karwath, Andreas, et al.
Publicado: (2002) -
Improving automatic GO annotation with semantic similarity
por: Sarker, Bishnu, et al.
Publicado: (2022) -
On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation
por: Wong, Wing-Cheong, et al.
Publicado: (2014) -
A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants
por: Dhorne-Pollet, Sophie, et al.
Publicado: (2020) -
ASAP: Amplification, sequencing & annotation of plastomes
por: Dhingra, Amit, et al.
Publicado: (2005)