Cargando…
Reranking candidate gene models with cross-species comparison for improved gene prediction
BACKGROUND: Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc). Competing models with similar state-based scores may be distinguishable with additional information. In parti...
Autores principales: | Liu, Qian, Crammer, Koby, Pereira, Fernando CN, Roos, David S |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587481/ https://www.ncbi.nlm.nih.gov/pubmed/18854050 http://dx.doi.org/10.1186/1471-2105-9-433 |
Ejemplares similares
-
Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction
por: Bernal, Axel, et al.
Publicado: (2007) -
Rethinking Query Expansion for BERT Reranking
por: Padaki, Ramith, et al.
Publicado: (2020) -
Reranking cancer mortality using years of life lost
por: Radkiewicz, Cecilia, et al.
Publicado: (2023) -
Multi-Information Flow CNN and Attribute-Aided Reranking for Person Reidentification
por: Sang, Haifeng, et al.
Publicado: (2019) -
Protein-Protein Docking with F(2)Dock 2.0 and GB-Rerank
por: Chowdhury, Rezaul, et al.
Publicado: (2013)