Cargando…
Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromized hosts, can cause fatal infection due to reactivation from an asymptomatic chronic i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587701/ https://www.ncbi.nlm.nih.gov/pubmed/19065262 http://dx.doi.org/10.1371/journal.pone.0003899 |
_version_ | 1782160923714125824 |
---|---|
author | Dybas, Joseph M. Madrid-Aliste, Carlos J. Che, Fa-Yun Nieves, Edward Rykunov, Dmitry Angeletti, Ruth Hogue Weiss, Louis M. Kim, Kami Fiser, Andras |
author_facet | Dybas, Joseph M. Madrid-Aliste, Carlos J. Che, Fa-Yun Nieves, Edward Rykunov, Dmitry Angeletti, Ruth Hogue Weiss, Louis M. Kim, Kami Fiser, Andras |
author_sort | Dybas, Joseph M. |
collection | PubMed |
description | BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromized hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome. METHODOLOGY/PRINCIPAL FINDINGS: We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%. CONCLUSIONS/SIGNIFICANCE: This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes. |
format | Text |
id | pubmed-2587701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-25877012008-12-09 Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii Dybas, Joseph M. Madrid-Aliste, Carlos J. Che, Fa-Yun Nieves, Edward Rykunov, Dmitry Angeletti, Ruth Hogue Weiss, Louis M. Kim, Kami Fiser, Andras PLoS One Research Article BACKGROUND: Toxoplasma gondii is an obligate intracellular protozoan that infects 20 to 90% of the population. It can cause both acute and chronic infections, many of which are asymptomatic, and, in immunocompromized hosts, can cause fatal infection due to reactivation from an asymptomatic chronic infection. An essential step towards understanding molecular mechanisms controlling transitions between the various life stages and identifying candidate drug targets is to accurately characterize the T. gondii proteome. METHODOLOGY/PRINCIPAL FINDINGS: We have explored the proteome of T. gondii tachyzoites with high throughput proteomics experiments and by comparison to publicly available cDNA sequence data. Mass spectrometry analysis validated 2,477 gene coding regions with 6,438 possible alternative gene predictions; approximately one third of the T. gondii proteome. The proteomics survey identified 609 proteins that are unique to Toxoplasma as compared to any known species including other Apicomplexan. Computational analysis identified 787 cases of possible gene duplication events and located at least 6,089 gene coding regions. Commonly used gene prediction algorithms produce very disparate sets of protein sequences, with pairwise overlaps ranging from 1.4% to 12%. Through this experimental and computational exercise we benchmarked gene prediction methods and observed false negative rates of 31 to 43%. CONCLUSIONS/SIGNIFICANCE: This study not only provides the largest proteomics exploration of the T. gondii proteome, but illustrates how high throughput proteomics experiments can elucidate correct gene structures in genomes. Public Library of Science 2008-12-09 /pmc/articles/PMC2587701/ /pubmed/19065262 http://dx.doi.org/10.1371/journal.pone.0003899 Text en Dybas et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dybas, Joseph M. Madrid-Aliste, Carlos J. Che, Fa-Yun Nieves, Edward Rykunov, Dmitry Angeletti, Ruth Hogue Weiss, Louis M. Kim, Kami Fiser, Andras Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii |
title | Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
|
title_full | Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
|
title_fullStr | Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
|
title_full_unstemmed | Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
|
title_short | Computational Analysis and Experimental Validation of Gene Predictions in Toxoplasma gondii
|
title_sort | computational analysis and experimental validation of gene predictions in toxoplasma gondii |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2587701/ https://www.ncbi.nlm.nih.gov/pubmed/19065262 http://dx.doi.org/10.1371/journal.pone.0003899 |
work_keys_str_mv | AT dybasjosephm computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT madridalistecarlosj computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT chefayun computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT nievesedward computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT rykunovdmitry computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT angelettiruthhogue computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT weisslouism computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT kimkami computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii AT fiserandras computationalanalysisandexperimentalvalidationofgenepredictionsintoxoplasmagondii |