Cargando…

The application of real-time PCR to the analysis of T cell repertoires

The diversity of T-cell populations is determined by the spectrum of antigen-specific T-cell receptors (TCRs) that are heterodimers of α and β subunits encoded by rearranged combinations of variable (AV and BV), joining (AJ and BJ), and constant region genes (AC and BC). We have developed a novel ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Wettstein, Peter, Strausbauch, Michael, Therneau, Terry, Borson, Nancy
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588499/
https://www.ncbi.nlm.nih.gov/pubmed/18835849
http://dx.doi.org/10.1093/nar/gkn634
Descripción
Sumario:The diversity of T-cell populations is determined by the spectrum of antigen-specific T-cell receptors (TCRs) that are heterodimers of α and β subunits encoded by rearranged combinations of variable (AV and BV), joining (AJ and BJ), and constant region genes (AC and BC). We have developed a novel approach for analysis of β transcript diversity in mice with a real-time PCR-based method that uses a matrix of BV- and BJ-specific primers to amplify 240 distinct BV–BJ combinations. Defined endpoints (Ct values) and dissociation curves are generated for each BV–BJ combination and the Ct values are consolidated in a matrix that characterizes the β transcript diversity of each RNA sample. Relative diversities of BV–BJ combinations in individual RNA samples are further described by estimates of scaled entropy. A skin allograft system was used to demonstrate that dissection of repertoires into 240 BV–BJ combinations increases efficiency of identifying and sequencing β transcripts that are overrepresented at inflammatory sites. These BV–BJ matrices should generate greater investigation in laboratory and clinical settings due to increased throughput, resolution and identification of overrepresented TCR transcripts.