Cargando…

Prostaglandin E2 and fever: a continuing debate.

Prostaglandin (PG) E2 is a potent hyperthermic agent and has been assigned an intermediary function in the response of thermoregulatory neurons to pyrogens. Though attractive, this idea has been challenged on several grounds. The present study confirms that brain PGE2 synthesis increases during feve...

Descripción completa

Detalles Bibliográficos
Autores principales: Coceani, F., Bishai, I., Lees, J., Sirko, S.
Formato: Texto
Lenguaje:English
Publicado: Yale Journal of Biology and Medicine 1986
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590134/
https://www.ncbi.nlm.nih.gov/pubmed/3488620
Descripción
Sumario:Prostaglandin (PG) E2 is a potent hyperthermic agent and has been assigned an intermediary function in the response of thermoregulatory neurons to pyrogens. Though attractive, this idea has been challenged on several grounds. The present study confirms that brain PGE2 synthesis increases during fever, the time course of the elevation according with a causative role of the compound. Our experimental data also argue against the involvement of a second cyclooxygenase product, specifically thromboxane (TX) A2, in the action of pyrogens. The sequence of events leading to PGE2 production and fever differs depending on the pyrogen, bacterial vs. leucocytic, and its route of administration. Blood-borne interleukin-1 (IL-1) acts on a discrete site in the central nervous system (CNS) which is tentatively identified with the organum vasculosum laminae terminalis (OVLT). The same site may also be the target for blood-borne endotoxin. In addition, endotoxin may promote PGE2 synthesis in the cerebral microvasculature. Both pyrogens, on the other hand, act diffusely throughout the CNS when given intrathecally. We conclude that PGE2 is well suited for an intermediary role in the genesis of fever and ascribe the reported inconsistencies to methodological factors.