Cargando…

Combined 1H and 31P NMR studies of cerebral metabolism in vivo.

NMR spectroscopic methods have recently been developed for measurement of several concentrated cerebral metabolites in vivo. At present, 31P spectra from the brain permit detection of ATP, PCr, Pi, and certain sugar and lipid phosphates. The resonant frequency of Pi also provides a measure of cerebr...

Descripción completa

Detalles Bibliográficos
Autor principal: Prichard, J. W.
Formato: Texto
Lenguaje:English
Publicado: Yale Journal of Biology and Medicine 1987
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2590310/
https://www.ncbi.nlm.nih.gov/pubmed/3577213
Descripción
Sumario:NMR spectroscopic methods have recently been developed for measurement of several concentrated cerebral metabolites in vivo. At present, 31P spectra from the brain permit detection of ATP, PCr, Pi, and certain sugar and lipid phosphates. The resonant frequency of Pi also provides a measure of cerebral pHi, and under some conditions ADP concentration can be calculated from information available in the 31P spectrum. The 1H spectrum of brain provides measurements of lactate, creatine, and several amino acids and choline-containing compounds. Both kinds of spectra can be obtained from the same subject. Our group at Yale used combined 31P and 1H methods to demonstrate that loss and recovery of phosphate energy stores and concomitant changes in cerebral amino acids during hypoglycemic coma in rodents could be observed in vivo. We then used the same methods to show that cerebral pHi can be normal while lactate is elevated in status epilepticus. NMR spectroscopy performed in vivo provides an array of chemically specific measurements unavailable by any other non-invasive method. It is thought to be entirely free of deleterious biological effects; hence, its potential for use in humans is considerable.