Cargando…

Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli

The pspE and glpE genes of Escherichia coli encode periplasmic and cytoplasmic single-domain rhodaneses, respectively, that catalyzes sulfur transfer from thiosulfate to thiophilic acceptors. Strains deficient in either or both genes were constructed. Comparison of rhodanese activity in these strain...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Hui, Donahue, Janet L, Battle, Scott E, Ray, W. Keith, Larson, Timothy J
Formato: Texto
Lenguaje:English
Publicado: Bentham Science Publishers Ltd 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593051/
https://www.ncbi.nlm.nih.gov/pubmed/19088907
http://dx.doi.org/10.2174/1874285800802010018
_version_ 1782161610147627008
author Cheng, Hui
Donahue, Janet L
Battle, Scott E
Ray, W. Keith
Larson, Timothy J
author_facet Cheng, Hui
Donahue, Janet L
Battle, Scott E
Ray, W. Keith
Larson, Timothy J
author_sort Cheng, Hui
collection PubMed
description The pspE and glpE genes of Escherichia coli encode periplasmic and cytoplasmic single-domain rhodaneses, respectively, that catalyzes sulfur transfer from thiosulfate to thiophilic acceptors. Strains deficient in either or both genes were constructed. Comparison of rhodanese activity in these strains revealed that PspE provides 85% of total rhodanese activity, with GlpE contributing most of the remainder. PspE activity was four times higher during growth on glycerol versus glucose, and was not induced by conditions that induce expression of the psp regulon. The glpE/pspE mutants displayed no apparent growth phenotypes, indicating that neither gene is required for biosynthesis of essential sulfur-containing molecules. PspE was purified by using cation exchange chromatography. Two distinct active peaks were eluted and differed in the degree of stable covalent modification, as assessed by mass spectrometry. The peak eluting earliest contained the equivalent mass of two additional sulfur atoms, whereas the second peak contained mainly one additional sulfur. Kinetic properties of purified PspE were consistent with catalysis occurring via a double-displacement mechanism via an enzyme-sulfur intermediate involving the active site cysteine. K(m)s for SSO(3)(2-) and CN(-) were 2.7 mM and 32 mM, respectively, and k(cat) was 64(s-1). The enzyme also catalyzed transfer of sulfur from thiosulfate to dithiothreitol, ultimately releasing sulfide.
format Text
id pubmed-2593051
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Bentham Science Publishers Ltd
record_format MEDLINE/PubMed
spelling pubmed-25930512008-12-16 Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli Cheng, Hui Donahue, Janet L Battle, Scott E Ray, W. Keith Larson, Timothy J Open Microbiol J Article The pspE and glpE genes of Escherichia coli encode periplasmic and cytoplasmic single-domain rhodaneses, respectively, that catalyzes sulfur transfer from thiosulfate to thiophilic acceptors. Strains deficient in either or both genes were constructed. Comparison of rhodanese activity in these strains revealed that PspE provides 85% of total rhodanese activity, with GlpE contributing most of the remainder. PspE activity was four times higher during growth on glycerol versus glucose, and was not induced by conditions that induce expression of the psp regulon. The glpE/pspE mutants displayed no apparent growth phenotypes, indicating that neither gene is required for biosynthesis of essential sulfur-containing molecules. PspE was purified by using cation exchange chromatography. Two distinct active peaks were eluted and differed in the degree of stable covalent modification, as assessed by mass spectrometry. The peak eluting earliest contained the equivalent mass of two additional sulfur atoms, whereas the second peak contained mainly one additional sulfur. Kinetic properties of purified PspE were consistent with catalysis occurring via a double-displacement mechanism via an enzyme-sulfur intermediate involving the active site cysteine. K(m)s for SSO(3)(2-) and CN(-) were 2.7 mM and 32 mM, respectively, and k(cat) was 64(s-1). The enzyme also catalyzed transfer of sulfur from thiosulfate to dithiothreitol, ultimately releasing sulfide. Bentham Science Publishers Ltd 2008-03-18 /pmc/articles/PMC2593051/ /pubmed/19088907 http://dx.doi.org/10.2174/1874285800802010018 Text en 2008 Bentham Science Publishers Ltd http://creativecommons.org/licenses/by/2.5/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Article
Cheng, Hui
Donahue, Janet L
Battle, Scott E
Ray, W. Keith
Larson, Timothy J
Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title_full Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title_fullStr Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title_full_unstemmed Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title_short Biochemical and Genetic Characterization of PspE and GlpE, Two Single-domain Sulfurtransferases of Escherichia coli
title_sort biochemical and genetic characterization of pspe and glpe, two single-domain sulfurtransferases of escherichia coli
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593051/
https://www.ncbi.nlm.nih.gov/pubmed/19088907
http://dx.doi.org/10.2174/1874285800802010018
work_keys_str_mv AT chenghui biochemicalandgeneticcharacterizationofpspeandglpetwosingledomainsulfurtransferasesofescherichiacoli
AT donahuejanetl biochemicalandgeneticcharacterizationofpspeandglpetwosingledomainsulfurtransferasesofescherichiacoli
AT battlescotte biochemicalandgeneticcharacterizationofpspeandglpetwosingledomainsulfurtransferasesofescherichiacoli
AT raywkeith biochemicalandgeneticcharacterizationofpspeandglpetwosingledomainsulfurtransferasesofescherichiacoli
AT larsontimothyj biochemicalandgeneticcharacterizationofpspeandglpetwosingledomainsulfurtransferasesofescherichiacoli