Cargando…

Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule

Evidence for a highly permeable paracellular shunt in the proximal tubule is reviewed. The paracellular pathway is described as a crucial site for the regulation of net absorption and for solute-solvent interaction. Available models for the coupling of salt and water transport are assessed with resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Boulpaep, Emile L., Sackin, Henry
Formato: Texto
Lenguaje:English
Publicado: 1977
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595392/
https://www.ncbi.nlm.nih.gov/pubmed/331692
_version_ 1782161682268684288
author Boulpaep, Emile L.
Sackin, Henry
author_facet Boulpaep, Emile L.
Sackin, Henry
author_sort Boulpaep, Emile L.
collection PubMed
description Evidence for a highly permeable paracellular shunt in the proximal tubule is reviewed. The paracellular pathway is described as a crucial site for the regulation of net absorption and for solute-solvent interaction. Available models for the coupling of salt and water transport are assessed with respect to the problem of isotonic water movement. Two new models are proposed taking into account that the tight junctions are permeable to salt and water and that active transport sites for sodium are distributed uniformly along the lateral cell membrane. The first model (continuous model) is a modification of Diamond and Bossert's proposal using different assumptions and boundary conditions. No appreciable standing gradients are predicted by this model. The second model (compartmental model) is an expansion of Curran's double membrane model by including additional compartments and driving forces. Both models predict a reabsorbate which is not isosmotic. For the particular case of the proximal tubule it is shown that in the presence of a leaky epithelium these deviations from isotonicity might have escaped experimental observation.
format Text
id pubmed-2595392
institution National Center for Biotechnology Information
language English
publishDate 1977
record_format MEDLINE/PubMed
spelling pubmed-25953922008-12-05 Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule Boulpaep, Emile L. Sackin, Henry Yale J Biol Med Symposium on Isotonic Water Movement Evidence for a highly permeable paracellular shunt in the proximal tubule is reviewed. The paracellular pathway is described as a crucial site for the regulation of net absorption and for solute-solvent interaction. Available models for the coupling of salt and water transport are assessed with respect to the problem of isotonic water movement. Two new models are proposed taking into account that the tight junctions are permeable to salt and water and that active transport sites for sodium are distributed uniformly along the lateral cell membrane. The first model (continuous model) is a modification of Diamond and Bossert's proposal using different assumptions and boundary conditions. No appreciable standing gradients are predicted by this model. The second model (compartmental model) is an expansion of Curran's double membrane model by including additional compartments and driving forces. Both models predict a reabsorbate which is not isosmotic. For the particular case of the proximal tubule it is shown that in the presence of a leaky epithelium these deviations from isotonicity might have escaped experimental observation. 1977 /pmc/articles/PMC2595392/ /pubmed/331692 Text en
spellingShingle Symposium on Isotonic Water Movement
Boulpaep, Emile L.
Sackin, Henry
Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title_full Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title_fullStr Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title_full_unstemmed Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title_short Role of the Paracellular Pathway in Isotonic Fluid Movement Across the Renal Tubule
title_sort role of the paracellular pathway in isotonic fluid movement across the renal tubule
topic Symposium on Isotonic Water Movement
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595392/
https://www.ncbi.nlm.nih.gov/pubmed/331692
work_keys_str_mv AT boulpaepemilel roleoftheparacellularpathwayinisotonicfluidmovementacrosstherenaltubule
AT sackinhenry roleoftheparacellularpathwayinisotonicfluidmovementacrosstherenaltubule