Cargando…

Urinary concentrating processes in vertebrates.

Avian and mammalian kidneys can produce a urine hyperosmotic to the blood by means of a renal countercurrent system. Birds are uricotelic; mammals are ureotelic. It is proposed that the inner medulla present in mammalian, but not in avian kidneys serves specifically to accumulate urea in the inner a...

Descripción completa

Detalles Bibliográficos
Autor principal: Schmidt-Nielsen, B.
Formato: Texto
Lenguaje:English
Publicado: Yale Journal of Biology and Medicine 1979
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595808/
https://www.ncbi.nlm.nih.gov/pubmed/538955
Descripción
Sumario:Avian and mammalian kidneys can produce a urine hyperosmotic to the blood by means of a renal countercurrent system. Birds are uricotelic; mammals are ureotelic. It is proposed that the inner medulla present in mammalian, but not in avian kidneys serves specifically to accumulate urea in the inner and outer medulla. Among mammalian kidneys the degree to which urea accumulates in the inner medulla is inversely related to the complexity of the vascular bundles (in the outer medulla) and the cortical urea recycling index. A model is proposed for urea recycling via the vascular bundles. The renal pelvis varies in size among mammals. Its relative size is unrelated to the type of vascular bundles, cortical recycling index; or urea accumulation in the inner medulla. Since urine refluxes into the renal pelvis during rising urine flow only, the function of the pelvis could be that of bringing the more dilute urine into contact with the outer medulla and underlying capillaries, thereby aiding in reducing the urea concentration in outer and inner medulla during rising urine flow. The size of the renal pelvis may be related to the volume of the inner medulla. Other factors may also be involved.