Cargando…

Virus synthesis and replication: reovirus vs. vaccinia virus.

The strategies with which two viral genomes that consist of double-stranded nucleic acid express themselves in infected cells are compared. The reovirus genome comprises ten segments of double-stranded RNA, each of which is, in essence, a gene. Each is transcribed into plus-stranded RNA which has tw...

Descripción completa

Detalles Bibliográficos
Autor principal: Joklik, W. K.
Formato: Texto
Lenguaje:English
Publicado: Yale Journal of Biology and Medicine 1980
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595841/
https://www.ncbi.nlm.nih.gov/pubmed/6990634
_version_ 1782161771614699520
author Joklik, W. K.
author_facet Joklik, W. K.
author_sort Joklik, W. K.
collection PubMed
description The strategies with which two viral genomes that consist of double-stranded nucleic acid express themselves in infected cells are compared. The reovirus genome comprises ten segments of double-stranded RNA, each of which is, in essence, a gene. Each is transcribed into plus-stranded RNA which has two functions: to serve as messenger RNA for the synthesis of the ten reovirus "primary" proteins, and to serve as template for the synthesis of minus-strands with which they remain associated, thereby giving rise to progeny double-stranded RNA. One of the most fascinating unsolved features of the reovirus multiplication cycle is the nature of the mechanism that ensures that each progeny virus particle contains a complete set of the ten individual genome RNA segments. The vaccinia virus genome is a linear molecule of double-stranded DNA which possesses sizable terminal redundancies (up to 7 percent, depending on the strain). The vaccinia virus multiplication cycle can be divided into a well-defined early and late period. During the early period, infecting virus particles are first uncoated to cores within which some 40-50 percent of the viral genome is transcribed. These cores are then uncoated further to naked viral DNA, a process that is mediated by protein(s) translated from the "core" messenger RNA. The overall transcription pattern in highly complex and is regulated both at the transcriptional as well as at the translational level. The most profound program changes occur at the time when DNA replication begins, when the transcription of "early" messenger RNAs, some of which are translated into "early" enzymes, gives way to that of "late" messenger RNAs, most of which are translated into structural virus components.
format Text
id pubmed-2595841
institution National Center for Biotechnology Information
language English
publishDate 1980
publisher Yale Journal of Biology and Medicine
record_format MEDLINE/PubMed
spelling pubmed-25958412008-12-05 Virus synthesis and replication: reovirus vs. vaccinia virus. Joklik, W. K. Yale J Biol Med Research Article The strategies with which two viral genomes that consist of double-stranded nucleic acid express themselves in infected cells are compared. The reovirus genome comprises ten segments of double-stranded RNA, each of which is, in essence, a gene. Each is transcribed into plus-stranded RNA which has two functions: to serve as messenger RNA for the synthesis of the ten reovirus "primary" proteins, and to serve as template for the synthesis of minus-strands with which they remain associated, thereby giving rise to progeny double-stranded RNA. One of the most fascinating unsolved features of the reovirus multiplication cycle is the nature of the mechanism that ensures that each progeny virus particle contains a complete set of the ten individual genome RNA segments. The vaccinia virus genome is a linear molecule of double-stranded DNA which possesses sizable terminal redundancies (up to 7 percent, depending on the strain). The vaccinia virus multiplication cycle can be divided into a well-defined early and late period. During the early period, infecting virus particles are first uncoated to cores within which some 40-50 percent of the viral genome is transcribed. These cores are then uncoated further to naked viral DNA, a process that is mediated by protein(s) translated from the "core" messenger RNA. The overall transcription pattern in highly complex and is regulated both at the transcriptional as well as at the translational level. The most profound program changes occur at the time when DNA replication begins, when the transcription of "early" messenger RNAs, some of which are translated into "early" enzymes, gives way to that of "late" messenger RNAs, most of which are translated into structural virus components. Yale Journal of Biology and Medicine 1980 /pmc/articles/PMC2595841/ /pubmed/6990634 Text en
spellingShingle Research Article
Joklik, W. K.
Virus synthesis and replication: reovirus vs. vaccinia virus.
title Virus synthesis and replication: reovirus vs. vaccinia virus.
title_full Virus synthesis and replication: reovirus vs. vaccinia virus.
title_fullStr Virus synthesis and replication: reovirus vs. vaccinia virus.
title_full_unstemmed Virus synthesis and replication: reovirus vs. vaccinia virus.
title_short Virus synthesis and replication: reovirus vs. vaccinia virus.
title_sort virus synthesis and replication: reovirus vs. vaccinia virus.
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2595841/
https://www.ncbi.nlm.nih.gov/pubmed/6990634
work_keys_str_mv AT joklikwk virussynthesisandreplicationreovirusvsvacciniavirus