Cargando…

Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse

BACKGROUND: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gen...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrieta, M C, Madsen, K, Doyle, J, Meddings, J
Formato: Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597688/
https://www.ncbi.nlm.nih.gov/pubmed/18829978
http://dx.doi.org/10.1136/gut.2008.150888
_version_ 1782161890335522816
author Arrieta, M C
Madsen, K
Doyle, J
Meddings, J
author_facet Arrieta, M C
Madsen, K
Doyle, J
Meddings, J
author_sort Arrieta, M C
collection PubMed
description BACKGROUND: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gene-deficient mouse spontaneously develops colitis after 12 weeks of age. These mice have been shown to have increased small intestinal permeability that appears early in life. Furthermore, the development of colitis is dependent upon luminal agents, as animals do not develop disease if raised under germ-free conditions. AIMS: To determine if the elevated small bowel permeability can be prevented, and if by doing so colonic disease is prevented or attenuated. METHODS: IL10 gene-deficient (IL10(−)/(−)) mice) were treated with AT-1001 (a zonulin peptide inhibitor), a small peptide previously demonstrated to reduce small intestinal permeability. Small intestinal permeability was measured, in vivo, weekly from 4 to 17 weeks of age. Colonic disease was assessed at 8 weeks in Ussing chambers, and at 17 weeks of age inflammatory cytokines and myeloperoxidase were measured in the colon. Colonic permeability and histology were also endpoints. RESULTS: Treated animals showed a marked reduction in small intestinal permeability. Average area under the lactulose/mannitol time curve: 5.36 (SE 0.08) in controls vs 3.97 (SE 0.07) in the high-dose AT-1001 group, p<0.05. At 8 weeks of age there was a significant reduction of colonic mucosal permeability and increased electrical resistance. By 17 weeks of age, secretion of tumour necrosis factor α (TNFα) from a colonic explant was significantly lower in the treated group (25.33 (SE 4.30) pg/mg vs 106.93 (SE 17.51) pg/ml in controls, p<0.01). All other markers also demonstrated a clear reduction of colitis in the treated animals. Additional experiments were performed which demonstrated that AT-1001 was functionally active only in the small intestine. CONCLUSIONS: This work suggests that increased intestinal permeability may be an important aetiological event in the development of colitis in IL10(−)/(−) mice.
format Text
id pubmed-2597688
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-25976882008-12-09 Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse Arrieta, M C Madsen, K Doyle, J Meddings, J Gut Inflammatory Bowel Disease BACKGROUND: Defects in the small intestinal epithelial barrier have been associated with inflammatory bowel disease but their role in the causation of disease is still a matter of debate. In some models of disease increased permeability appears to be a very early event. The interleukin 10 (IL10) gene-deficient mouse spontaneously develops colitis after 12 weeks of age. These mice have been shown to have increased small intestinal permeability that appears early in life. Furthermore, the development of colitis is dependent upon luminal agents, as animals do not develop disease if raised under germ-free conditions. AIMS: To determine if the elevated small bowel permeability can be prevented, and if by doing so colonic disease is prevented or attenuated. METHODS: IL10 gene-deficient (IL10(−)/(−)) mice) were treated with AT-1001 (a zonulin peptide inhibitor), a small peptide previously demonstrated to reduce small intestinal permeability. Small intestinal permeability was measured, in vivo, weekly from 4 to 17 weeks of age. Colonic disease was assessed at 8 weeks in Ussing chambers, and at 17 weeks of age inflammatory cytokines and myeloperoxidase were measured in the colon. Colonic permeability and histology were also endpoints. RESULTS: Treated animals showed a marked reduction in small intestinal permeability. Average area under the lactulose/mannitol time curve: 5.36 (SE 0.08) in controls vs 3.97 (SE 0.07) in the high-dose AT-1001 group, p<0.05. At 8 weeks of age there was a significant reduction of colonic mucosal permeability and increased electrical resistance. By 17 weeks of age, secretion of tumour necrosis factor α (TNFα) from a colonic explant was significantly lower in the treated group (25.33 (SE 4.30) pg/mg vs 106.93 (SE 17.51) pg/ml in controls, p<0.01). All other markers also demonstrated a clear reduction of colitis in the treated animals. Additional experiments were performed which demonstrated that AT-1001 was functionally active only in the small intestine. CONCLUSIONS: This work suggests that increased intestinal permeability may be an important aetiological event in the development of colitis in IL10(−)/(−) mice. BMJ Publishing Group 2008-01 2008-10-01 /pmc/articles/PMC2597688/ /pubmed/18829978 http://dx.doi.org/10.1136/gut.2008.150888 Text en © Arrieta et al 2009 http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Inflammatory Bowel Disease
Arrieta, M C
Madsen, K
Doyle, J
Meddings, J
Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title_full Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title_fullStr Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title_full_unstemmed Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title_short Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse
title_sort reducing small intestinal permeability attenuates colitis in the il10 gene-deficient mouse
topic Inflammatory Bowel Disease
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597688/
https://www.ncbi.nlm.nih.gov/pubmed/18829978
http://dx.doi.org/10.1136/gut.2008.150888
work_keys_str_mv AT arrietamc reducingsmallintestinalpermeabilityattenuatescolitisintheil10genedeficientmouse
AT madsenk reducingsmallintestinalpermeabilityattenuatescolitisintheil10genedeficientmouse
AT doylej reducingsmallintestinalpermeabilityattenuatescolitisintheil10genedeficientmouse
AT meddingsj reducingsmallintestinalpermeabilityattenuatescolitisintheil10genedeficientmouse