Cargando…
Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases
DNA aptamers RT5, RT6 and RT47 form a group of related sequences that inhibit HIV-1 reverse transcriptase (RT). The essential inhibitory structure is identified here as bimodular, with a 5′ stem–loop module physically connected to a 3′-guanosine quadruplex module. The stem–loop tolerates considerabl...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602765/ https://www.ncbi.nlm.nih.gov/pubmed/18996899 http://dx.doi.org/10.1093/nar/gkn891 |
_version_ | 1782162530132557824 |
---|---|
author | Michalowski, Daniel Chitima-Matsiga, Rebecca Held, Daniel M. Burke, Donald H. |
author_facet | Michalowski, Daniel Chitima-Matsiga, Rebecca Held, Daniel M. Burke, Donald H. |
author_sort | Michalowski, Daniel |
collection | PubMed |
description | DNA aptamers RT5, RT6 and RT47 form a group of related sequences that inhibit HIV-1 reverse transcriptase (RT). The essential inhibitory structure is identified here as bimodular, with a 5′ stem–loop module physically connected to a 3′-guanosine quadruplex module. The stem–loop tolerates considerable sequence plasticity. Connections between the guanosine triplets in the quadruplex could be simplified to a single nucleotide or a nonnucleic acid linker, such as hexaethylene glycol. All 12 quadruplex guanosines are required in an aptamer retaining most of the original loop sequence from RT6; only 11 are required for aptamer R1T (single T residue in intra-quadruplex loops). Circular dichroism (CD) spectroscopy gave ellipticity minima and maxima at 240 nm and 264 nm, indicating a parallel arrangement of the quadruplex strands. The simplified aptamers displayed increased overall stability. An aptamer carrying the original intra-quadruplex loops from RT6 inhibited RT in K(+) buffers but not in Na(+) buffers and displayed significant CD spectral broadening in Na(+) buffers, while R1T inhibited RT in both buffers and displayed less broadening in Na(+) buffers. The bimodular ssDNA aptamers inhibited RT from diverse primate lentiviruses with low nM IC(50) values. These data provide insight into the requirements for broad-spectrum RT inhibition by nucleic acid aptamers. |
format | Text |
id | pubmed-2602765 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-26027652009-03-05 Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases Michalowski, Daniel Chitima-Matsiga, Rebecca Held, Daniel M. Burke, Donald H. Nucleic Acids Res Molecular Biology DNA aptamers RT5, RT6 and RT47 form a group of related sequences that inhibit HIV-1 reverse transcriptase (RT). The essential inhibitory structure is identified here as bimodular, with a 5′ stem–loop module physically connected to a 3′-guanosine quadruplex module. The stem–loop tolerates considerable sequence plasticity. Connections between the guanosine triplets in the quadruplex could be simplified to a single nucleotide or a nonnucleic acid linker, such as hexaethylene glycol. All 12 quadruplex guanosines are required in an aptamer retaining most of the original loop sequence from RT6; only 11 are required for aptamer R1T (single T residue in intra-quadruplex loops). Circular dichroism (CD) spectroscopy gave ellipticity minima and maxima at 240 nm and 264 nm, indicating a parallel arrangement of the quadruplex strands. The simplified aptamers displayed increased overall stability. An aptamer carrying the original intra-quadruplex loops from RT6 inhibited RT in K(+) buffers but not in Na(+) buffers and displayed significant CD spectral broadening in Na(+) buffers, while R1T inhibited RT in both buffers and displayed less broadening in Na(+) buffers. The bimodular ssDNA aptamers inhibited RT from diverse primate lentiviruses with low nM IC(50) values. These data provide insight into the requirements for broad-spectrum RT inhibition by nucleic acid aptamers. Oxford University Press 2008-12 2008-11-07 /pmc/articles/PMC2602765/ /pubmed/18996899 http://dx.doi.org/10.1093/nar/gkn891 Text en © 2008 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Molecular Biology Michalowski, Daniel Chitima-Matsiga, Rebecca Held, Daniel M. Burke, Donald H. Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title | Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title_full | Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title_fullStr | Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title_full_unstemmed | Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title_short | Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases |
title_sort | novel bimodular dna aptamers with guanosine quadruplexes inhibit phylogenetically diverse hiv-1 reverse transcriptases |
topic | Molecular Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2602765/ https://www.ncbi.nlm.nih.gov/pubmed/18996899 http://dx.doi.org/10.1093/nar/gkn891 |
work_keys_str_mv | AT michalowskidaniel novelbimodulardnaaptamerswithguanosinequadruplexesinhibitphylogeneticallydiversehiv1reversetranscriptases AT chitimamatsigarebecca novelbimodulardnaaptamerswithguanosinequadruplexesinhibitphylogeneticallydiversehiv1reversetranscriptases AT helddanielm novelbimodulardnaaptamerswithguanosinequadruplexesinhibitphylogeneticallydiversehiv1reversetranscriptases AT burkedonaldh novelbimodulardnaaptamerswithguanosinequadruplexesinhibitphylogeneticallydiversehiv1reversetranscriptases |