Cargando…
Adaptive Evolution in Zinc Finger Transcription Factors
The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly–zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of th...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604467/ https://www.ncbi.nlm.nih.gov/pubmed/19119423 http://dx.doi.org/10.1371/journal.pgen.1000325 |
_version_ | 1782162745975635968 |
---|---|
author | Emerson, Ryan O. Thomas, James H. |
author_facet | Emerson, Ryan O. Thomas, James H. |
author_sort | Emerson, Ryan O. |
collection | PubMed |
description | The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly–zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of the poly-ZF family of putative transcriptional repressors, many of which have associated KRAB, SCAN, or BTB domains. Analysis of the gene family across the tree of life indicates that the gene family arose from a small ancestral group of eukaryotic zinc-finger transcription factors through many repeated gene duplications accompanied by functional divergence. The ancestral gene family has probably expanded independently in several lineages, including mammals and some fishes. Investigation of adaptive evolution among recent paralogs using d(N)/d(S) analysis indicates that a major component of the selective pressure acting on these genes has been positive selection to change their DNA-binding specificity. These results suggest that the poly-ZF genes are a major source of new transcriptional repression activity in humans and other primates. |
format | Text |
id | pubmed-2604467 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26044672009-01-02 Adaptive Evolution in Zinc Finger Transcription Factors Emerson, Ryan O. Thomas, James H. PLoS Genet Research Article The majority of human genes are conserved among mammals, but some gene families have undergone extensive expansion in particular lineages. Here, we present an evolutionary analysis of one such gene family, the poly–zinc-finger (poly-ZF) genes. The human genome encodes approximately 700 members of the poly-ZF family of putative transcriptional repressors, many of which have associated KRAB, SCAN, or BTB domains. Analysis of the gene family across the tree of life indicates that the gene family arose from a small ancestral group of eukaryotic zinc-finger transcription factors through many repeated gene duplications accompanied by functional divergence. The ancestral gene family has probably expanded independently in several lineages, including mammals and some fishes. Investigation of adaptive evolution among recent paralogs using d(N)/d(S) analysis indicates that a major component of the selective pressure acting on these genes has been positive selection to change their DNA-binding specificity. These results suggest that the poly-ZF genes are a major source of new transcriptional repression activity in humans and other primates. Public Library of Science 2009-01-02 /pmc/articles/PMC2604467/ /pubmed/19119423 http://dx.doi.org/10.1371/journal.pgen.1000325 Text en Emerson, Thomas. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Emerson, Ryan O. Thomas, James H. Adaptive Evolution in Zinc Finger Transcription Factors |
title | Adaptive Evolution in Zinc Finger Transcription Factors |
title_full | Adaptive Evolution in Zinc Finger Transcription Factors |
title_fullStr | Adaptive Evolution in Zinc Finger Transcription Factors |
title_full_unstemmed | Adaptive Evolution in Zinc Finger Transcription Factors |
title_short | Adaptive Evolution in Zinc Finger Transcription Factors |
title_sort | adaptive evolution in zinc finger transcription factors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604467/ https://www.ncbi.nlm.nih.gov/pubmed/19119423 http://dx.doi.org/10.1371/journal.pgen.1000325 |
work_keys_str_mv | AT emersonryano adaptiveevolutioninzincfingertranscriptionfactors AT thomasjamesh adaptiveevolutioninzincfingertranscriptionfactors |