Cargando…
Determining gene expression on a single pair of microarrays
BACKGROUND: In microarray experiments the numbers of replicates are often limited due to factors such as cost, availability of sample or poor hybridization. There are currently few choices for the analysis of a pair of microarrays where N = 1 in each condition. In this paper, we demonstrate the effe...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605475/ https://www.ncbi.nlm.nih.gov/pubmed/19025600 http://dx.doi.org/10.1186/1471-2105-9-489 |
Sumario: | BACKGROUND: In microarray experiments the numbers of replicates are often limited due to factors such as cost, availability of sample or poor hybridization. There are currently few choices for the analysis of a pair of microarrays where N = 1 in each condition. In this paper, we demonstrate the effectiveness of a new algorithm called PINC (PINC is Not Cyber-T) that can analyze Affymetrix microarray experiments. RESULTS: PINC treats each pair of probes within a probeset as an independent measure of gene expression using the Bayesian framework of the Cyber-T algorithm and then assigns a corrected p-value for each gene comparison. The p-values generated by PINC accurately control False Discovery rate on Affymetrix control data sets, but are small enough that family-wise error rates (such as the Holm's step down method) can be used as a conservative alternative to false discovery rate with little loss of sensitivity on control data sets. CONCLUSION: PINC outperforms previously published methods for determining differentially expressed genes when comparing Affymetrix microarrays with N = 1 in each condition. When applied to biological samples, PINC can be used to assess the degree of variability observed among biological replicates in addition to analyzing isolated pairs of microarrays. |
---|