Cargando…
Unsupervised reduction of random noise in complex data by a row-specific, sorted principal component-guided method
BACKGROUND: Large biological data sets, such as expression profiles, benefit from reduction of random noise. Principal component (PC) analysis has been used for this purpose, but it tends to remove small features as well as random noise. RESULTS: We interpreted the PCs as a mere signal-rich coordina...
Autores principales: | Foley, Joseph W, Katagiri, Fumiaki |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607290/ https://www.ncbi.nlm.nih.gov/pubmed/19040754 http://dx.doi.org/10.1186/1471-2105-9-508 |
Ejemplares similares
-
Principal component gene set enrichment (PCGSE)
por: Frost, H. Robert, et al.
Publicado: (2015) -
Using principal component analysis to reduce complex datasets produced by robotic technology in healthy participants
por: Wood, Michael D., et al.
Publicado: (2018) -
An integrated approach to epitope analysis I: Dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches
por: Bremel, Robert D, et al.
Publicado: (2010) -
Probabilistic principal component analysis for metabolomic data
por: Nyamundanda, Gift, et al.
Publicado: (2010) -
An Eigenvalue test for spatial principal component analysis
por: Montano, V., et al.
Publicado: (2017)