Cargando…

A toolbox for epitope-tagging and genome-wide location analysis in Candida albicans

BACKGROUND: Candida albicans is a diploid pathogenic fungus not yet amenable to routine genetic investigations. Understanding aspects of the regulation of its biological functions and the assembly of its protein complexes would lead to further insight into the biology of this common disease-causing...

Descripción completa

Detalles Bibliográficos
Autores principales: Lavoie, Hugo, Sellam, Adnane, Askew, Christopher, Nantel, André, Whiteway, Malcolm
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607300/
https://www.ncbi.nlm.nih.gov/pubmed/19055720
http://dx.doi.org/10.1186/1471-2164-9-578
Descripción
Sumario:BACKGROUND: Candida albicans is a diploid pathogenic fungus not yet amenable to routine genetic investigations. Understanding aspects of the regulation of its biological functions and the assembly of its protein complexes would lead to further insight into the biology of this common disease-causing microbial agent. RESULTS: We have developed a toolbox allowing in vivo protein tagging by PCR-mediated homologous recombination with TAP, HA and MYC tags. The transformation cassettes were designed to accommodate a common set of integration primers. The tagged proteins can be used to perform tandem affinity purification (TAP) or chromatin immunoprecipitation coupled with microarray analysis (ChIP-CHIP). Tandem affinity purification of C. albicans Nop1 revealed the high conservation of the small processome composition in yeasts. Data obtained with in vivo TAP-tagged Tbf1, Cbf1 and Mcm1 recapitulates previously published genome-wide location profiling by ChIP-CHIP. We also designed a new reporter system for in vivo analysis of transcriptional activity of gene loci in C. albicans. CONCLUSION: This toolbox provides a basic setup to perform purification of protein complexes and increase the number of annotated transcriptional regulators and genetic circuits in C. albicans.