Cargando…

Expression of NAD(P)H Oxidase Subunits and Their Contribution to Cardiovascular Damage in Aldosterone/Salt-Induced Hypertensive Rat

NAD(P)H oxidase plays an important role in hypertension and its complication in aldosterone-salt rat. We questioned whether NAD(P)H oxidase subunit expression and activity are modulated by aldosterone and whether this is associated with target-organ damage. Rats were infused with aldosterone (0.75 µ...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Young Mee, Lim, Bong Hee, Touyz, Rhian M., Park, Jeong Bae
Formato: Texto
Lenguaje:English
Publicado: The Korean Academy of Medical Sciences 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610641/
https://www.ncbi.nlm.nih.gov/pubmed/19119450
http://dx.doi.org/10.3346/jkms.2008.23.6.1039
Descripción
Sumario:NAD(P)H oxidase plays an important role in hypertension and its complication in aldosterone-salt rat. We questioned whether NAD(P)H oxidase subunit expression and activity are modulated by aldosterone and whether this is associated with target-organ damage. Rats were infused with aldosterone (0.75 µg/hr/day) for 6 weeks and were given 0.9% NaCl±losartan (30 mg/kg/day), spironolactone (200 mg/kg/day), and apocynin (1.5 mM/L). Aldosterone-salt hypertension was prevented completely by spironolactone and modestly by losartan and apocynin. Aldosterone increased aortic NAD(P)H oxidase activity by 34% and spironolactone and losartan inhibited the activity. Aortic expression of the subunits p47(phox), gp91(phox), and p22(phox) increased in aldosterone-infused rats by 5.5, 4.7, and 3.2-fold, respectively, which was decreased completely by spironolactone and partially by losartan and apocynin. Therefore, the increased expression of NAD(P)H oxidase may contribute to cardiovascular damage in aldosterone-salt hypertension through the increased expression of each subunit.