Cargando…
Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers
METHODS: We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological q...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613386/ https://www.ncbi.nlm.nih.gov/pubmed/18992152 http://dx.doi.org/10.1186/1479-5876-6-69 |
_version_ | 1782163173382553600 |
---|---|
author | Rohrbeck, Astrid Neukirchen, Judith Rosskopf, Michael Pardillos, Guillermo G Geddert, Helene Schwalen, Andreas Gabbert, Helmut E von Haeseler, Arndt Pitschke, Gerald Schott, Matthias Kronenwett, Ralf Haas, Rainer Rohr, Ulrich-Peter |
author_facet | Rohrbeck, Astrid Neukirchen, Judith Rosskopf, Michael Pardillos, Guillermo G Geddert, Helene Schwalen, Andreas Gabbert, Helmut E von Haeseler, Arndt Pitschke, Gerald Schott, Matthias Kronenwett, Ralf Haas, Rainer Rohr, Ulrich-Peter |
author_sort | Rohrbeck, Astrid |
collection | PubMed |
description | METHODS: We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray experiments were followed, including the stipulated use of laser capture microdissection for separation and purification of the lung cancer tumor cells from surrounding tissue. RESULTS: Based on differentially expressed genes, different lung cancer samples could be distinguished from each other and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335 and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%). Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics. Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes were corroborated by quantitative real-time PCR. Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT. Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all samples from an independent test set of 13 further tumors (AC or SCC) were also correctly classified. CONCLUSION: The data from this research identified potential candidate genes which could be used as the basis for the development of diagnostic tools and lung tumor type-specific targeted therapies. |
format | Text |
id | pubmed-2613386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26133862009-01-03 Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers Rohrbeck, Astrid Neukirchen, Judith Rosskopf, Michael Pardillos, Guillermo G Geddert, Helene Schwalen, Andreas Gabbert, Helmut E von Haeseler, Arndt Pitschke, Gerald Schott, Matthias Kronenwett, Ralf Haas, Rainer Rohr, Ulrich-Peter J Transl Med Research METHODS: We examined gene expression profiles of tumor cells from 29 untreated patients with lung cancer (10 adenocarcinomas (AC), 10 squamous cell carcinomas (SCC), and 9 small cell lung cancer (SCLC)) in comparison to 5 samples of normal lung tissue (NT). The European and American methodological quality guidelines for microarray experiments were followed, including the stipulated use of laser capture microdissection for separation and purification of the lung cancer tumor cells from surrounding tissue. RESULTS: Based on differentially expressed genes, different lung cancer samples could be distinguished from each other and from normal lung tissue using hierarchical clustering. Comparing AC, SCC and SCLC with NT, we found 205, 335 and 404 genes, respectively, that were at least 2-fold differentially expressed (estimated false discovery rate: < 2.6%). Different lung cancer subtypes had distinct molecular phenotypes, which also reflected their biological characteristics. Differentially expressed genes in human lung tumors which may be of relevance in the respective lung cancer subtypes were corroborated by quantitative real-time PCR. Genetic programming (GP) was performed to construct a classifier for distinguishing between AC, SCC, SCLC, and NT. Forty genes, that could be used to correctly classify the tumor or NT samples, have been identified. In addition, all samples from an independent test set of 13 further tumors (AC or SCC) were also correctly classified. CONCLUSION: The data from this research identified potential candidate genes which could be used as the basis for the development of diagnostic tools and lung tumor type-specific targeted therapies. BioMed Central 2008-11-07 /pmc/articles/PMC2613386/ /pubmed/18992152 http://dx.doi.org/10.1186/1479-5876-6-69 Text en Copyright © 2008 Rohrbeck et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Rohrbeck, Astrid Neukirchen, Judith Rosskopf, Michael Pardillos, Guillermo G Geddert, Helene Schwalen, Andreas Gabbert, Helmut E von Haeseler, Arndt Pitschke, Gerald Schott, Matthias Kronenwett, Ralf Haas, Rainer Rohr, Ulrich-Peter Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title | Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title_full | Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title_fullStr | Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title_full_unstemmed | Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title_short | Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
title_sort | gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613386/ https://www.ncbi.nlm.nih.gov/pubmed/18992152 http://dx.doi.org/10.1186/1479-5876-6-69 |
work_keys_str_mv | AT rohrbeckastrid geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT neukirchenjudith geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT rosskopfmichael geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT pardillosguillermog geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT gedderthelene geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT schwalenandreas geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT gabberthelmute geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT vonhaeselerarndt geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT pitschkegerald geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT schottmatthias geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT kronenwettralf geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT haasrainer geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers AT rohrulrichpeter geneexpressionprofilingformoleculardistinctionandcharacterizationoflasercapturedprimarylungcancers |