Cargando…
Fast Gene Ontology based clustering for microarray experiments
BACKGROUND: Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a ve...
Autores principales: | Ovaska, Kristian, Laakso, Marko, Hautaniemi, Sampsa |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613876/ https://www.ncbi.nlm.nih.gov/pubmed/19025591 http://dx.doi.org/10.1186/1756-0381-1-11 |
Ejemplares similares
-
Visualization and analysis of microarray and gene ontology data with treemaps
por: Baehrecke, Eric H, et al.
Publicado: (2004) -
R/BHC: fast Bayesian hierarchical clustering for microarray data
por: Savage, Richard S, et al.
Publicado: (2009) -
BayGO: Bayesian analysis of ontology term enrichment in microarray data
por: Vêncio, Ricardo ZN, et al.
Publicado: (2006) -
GOMCL: a toolkit to cluster, evaluate, and extract non-redundant associations of Gene Ontology-based functions
por: Wang, Guannan, et al.
Publicado: (2020) -
High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID)
por: Zeeberg, Barry R, et al.
Publicado: (2005)