Cargando…
Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata
BACKGROUND: The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp.) and herbivores (Manduca sexta) in its native habitats. Defense responses targeted against the...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613890/ https://www.ncbi.nlm.nih.gov/pubmed/18950524 http://dx.doi.org/10.1186/1471-2229-8-109 |
_version_ | 1782163205713297408 |
---|---|
author | Rayapuram, Cbgowda Baldwin, Ian T |
author_facet | Rayapuram, Cbgowda Baldwin, Ian T |
author_sort | Rayapuram, Cbgowda |
collection | PubMed |
description | BACKGROUND: The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp.) and herbivores (Manduca sexta) in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000), which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. RESULTS: M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. CONCLUSION: These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more effective than Nadefensin alone in resisting PST DC3000. |
format | Text |
id | pubmed-2613890 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26138902009-01-06 Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata Rayapuram, Cbgowda Baldwin, Ian T BMC Plant Biol Research Article BACKGROUND: The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp.) and herbivores (Manduca sexta) in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000), which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. RESULTS: M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. CONCLUSION: These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more effective than Nadefensin alone in resisting PST DC3000. BioMed Central 2008-10-25 /pmc/articles/PMC2613890/ /pubmed/18950524 http://dx.doi.org/10.1186/1471-2229-8-109 Text en Copyright © 2008 Rayapuram and Baldwin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rayapuram, Cbgowda Baldwin, Ian T Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title | Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title_full | Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title_fullStr | Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title_full_unstemmed | Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title_short | Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata |
title_sort | host-plant-mediated effects of nadefensin on herbivore and pathogen resistance in nicotiana attenuata |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613890/ https://www.ncbi.nlm.nih.gov/pubmed/18950524 http://dx.doi.org/10.1186/1471-2229-8-109 |
work_keys_str_mv | AT rayapuramcbgowda hostplantmediatedeffectsofnadefensinonherbivoreandpathogenresistanceinnicotianaattenuata AT baldwiniant hostplantmediatedeffectsofnadefensinonherbivoreandpathogenresistanceinnicotianaattenuata |