Cargando…
Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information
BACKGROUND: Probability based statistical learning methods such as mutual information and Bayesian networks have emerged as a major category of tools for reverse engineering mechanistic relationships from quantitative biological data. In this work we introduce a new statistical learning strategy, MI...
Autores principales: | Luo, Weijun, Hankenson, Kurt D, Woolf, Peter J |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613931/ https://www.ncbi.nlm.nih.gov/pubmed/18980677 http://dx.doi.org/10.1186/1471-2105-9-467 |
Ejemplares similares
-
Time series gene expression profiling and temporal regulatory pathway analysis of BMP6 induced osteoblast differentiation and mineralization
por: Luo, Weijun, et al.
Publicado: (2011) -
GAGE: generally applicable gene set enrichment for pathway analysis
por: Luo, Weijun, et al.
Publicado: (2009) -
On the Impact of Entropy Estimation on Transcriptional Regulatory Network Inference Based on Mutual Information
por: Olsen, Catharina, et al.
Publicado: (2008) -
Gene Regulatory Network Reconstruction Using Conditional Mutual Information
por: Liang, Kuo-Ching, et al.
Publicado: (2008) -
Mutual Information between Discrete and Continuous Data Sets
por: Ross, Brian C.
Publicado: (2014)