Cargando…
A discriminative method for protein remote homology detection and fold recognition combining Top-n-grams and latent semantic analysis
BACKGROUND: Protein remote homology detection and fold recognition are central problems in bioinformatics. Currently, discriminative methods based on support vector machine (SVM) are the most effective and accurate methods for solving these problems. A key step to improve the performance of the SVM-...
Autores principales: | Liu, Bin, Wang, Xiaolong, Lin, Lei, Dong, Qiwen, Wang, Xuan |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613933/ https://www.ncbi.nlm.nih.gov/pubmed/19046430 http://dx.doi.org/10.1186/1471-2105-9-510 |
Ejemplares similares
-
Using distances between Top-n-gram and residue pairs for protein remote homology detection
por: Liu, Bin, et al.
Publicado: (2014) -
Building multiclass classifiers for remote homology detection and fold recognition
por: Rangwala, Huzefa, et al.
Publicado: (2006) -
Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader
por: Zhao, Kailong, et al.
Publicado: (2023) -
Using Amino Acid Physicochemical Distance Transformation for Fast Protein Remote Homology Detection
por: Liu, Bin, et al.
Publicado: (2012) -
Multidimensional Latent Semantic Networks for Text Humor Recognition
por: Xiong, Siqi, et al.
Publicado: (2022)