Cargando…
Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification
The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit is the most popular locus for species identification and subgeneric phylogenetic inference in sequence-based mycological research. The region is known to show certain variability even within species, although its intra...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614188/ https://www.ncbi.nlm.nih.gov/pubmed/19204817 |
_version_ | 1782163219407699968 |
---|---|
author | Nilsson, R. Henrik Kristiansson, Erik Ryberg, Martin Hallenberg, Nils Larsson, Karl-Henrik |
author_facet | Nilsson, R. Henrik Kristiansson, Erik Ryberg, Martin Hallenberg, Nils Larsson, Karl-Henrik |
author_sort | Nilsson, R. Henrik |
collection | PubMed |
description | The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit is the most popular locus for species identification and subgeneric phylogenetic inference in sequence-based mycological research. The region is known to show certain variability even within species, although its intraspecific variability is often held to be limited and clearly separated from interspecific variability. The existence of such a divide between intra- and interspecific variability is implicitly assumed by automated approaches to species identification, but whether intraspecific variability indeed is negligible within the fungal kingdom remains contentious. The present study estimates the intraspecific ITS variability in all fungi presently available to the mycological community through the international sequence databases. Substantial differences were found within the kingdom, and the results are not easily correlated to the taxonomic affiliation or nutritional mode of the taxa considered. No single unifying yet stringent upper limit for intraspecific variability, such as the canonical 3% threshold, appears to be applicable with the desired outcome throughout the fungi. Our results caution against simplified approaches to automated ITS-based species delimitation and reiterate the need for taxonomic expertise in the translation of sequence data into species names. |
format | Text |
id | pubmed-2614188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Libertas Academica |
record_format | MEDLINE/PubMed |
spelling | pubmed-26141882009-02-09 Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification Nilsson, R. Henrik Kristiansson, Erik Ryberg, Martin Hallenberg, Nils Larsson, Karl-Henrik Evol Bioinform Online Original Research The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit is the most popular locus for species identification and subgeneric phylogenetic inference in sequence-based mycological research. The region is known to show certain variability even within species, although its intraspecific variability is often held to be limited and clearly separated from interspecific variability. The existence of such a divide between intra- and interspecific variability is implicitly assumed by automated approaches to species identification, but whether intraspecific variability indeed is negligible within the fungal kingdom remains contentious. The present study estimates the intraspecific ITS variability in all fungi presently available to the mycological community through the international sequence databases. Substantial differences were found within the kingdom, and the results are not easily correlated to the taxonomic affiliation or nutritional mode of the taxa considered. No single unifying yet stringent upper limit for intraspecific variability, such as the canonical 3% threshold, appears to be applicable with the desired outcome throughout the fungi. Our results caution against simplified approaches to automated ITS-based species delimitation and reiterate the need for taxonomic expertise in the translation of sequence data into species names. Libertas Academica 2008-05-26 /pmc/articles/PMC2614188/ /pubmed/19204817 Text en Copyright © 2008 The authors. http://creativecommons.org/licenses/by/3.0 This article is published under the Creative Commons Attribution By licence. For further information go to: http://creativecommons.org/licenses/by/3.0. (http://creativecommons.org/licenses/by/3.0) |
spellingShingle | Original Research Nilsson, R. Henrik Kristiansson, Erik Ryberg, Martin Hallenberg, Nils Larsson, Karl-Henrik Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title | Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title_full | Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title_fullStr | Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title_full_unstemmed | Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title_short | Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification |
title_sort | intraspecific its variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614188/ https://www.ncbi.nlm.nih.gov/pubmed/19204817 |
work_keys_str_mv | AT nilssonrhenrik intraspecificitsvariabilityinthekingdomfungiasexpressedintheinternationalsequencedatabasesanditsimplicationsformolecularspeciesidentification AT kristianssonerik intraspecificitsvariabilityinthekingdomfungiasexpressedintheinternationalsequencedatabasesanditsimplicationsformolecularspeciesidentification AT rybergmartin intraspecificitsvariabilityinthekingdomfungiasexpressedintheinternationalsequencedatabasesanditsimplicationsformolecularspeciesidentification AT hallenbergnils intraspecificitsvariabilityinthekingdomfungiasexpressedintheinternationalsequencedatabasesanditsimplicationsformolecularspeciesidentification AT larssonkarlhenrik intraspecificitsvariabilityinthekingdomfungiasexpressedintheinternationalsequencedatabasesanditsimplicationsformolecularspeciesidentification |