Cargando…
SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators
Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a “scanless” microscope that...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614319/ https://www.ncbi.nlm.nih.gov/pubmed/19129923 http://dx.doi.org/10.3389/neuro.04.005.2008 |
_version_ | 1782163224421990400 |
---|---|
author | Nikolenko, Volodymyr Watson, Brendon O. Araya, Roberto Woodruff, Alan Peterka, Darcy S. Yuste, Rafael |
author_facet | Nikolenko, Volodymyr Watson, Brendon O. Araya, Roberto Woodruff, Alan Peterka, Darcy S. Yuste, Rafael |
author_sort | Nikolenko, Volodymyr |
collection | PubMed |
description | Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a “scanless” microscope that does not contain mechanically moving parts. This microscope uses a diffractive spatial light modulator (SLM) to shape an incoming two-photon laser beam into any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision. To demonstrate the usefulness of this microscope, we perform two-photon uncaging of glutamate to activate dendritic spines and cortical neurons in brain slices. We also use it to carry out fast (60 Hz) two-photon calcium imaging of action potentials in neuronal populations. Thus, SLM microscopy appears to be a powerful tool for imaging and optically manipulating neurons and neuronal circuits. Moreover, the use of SLMs expands the flexibility of laser microscopy, as it can substitute traditional simple fixed lenses with any calculated lens function. |
format | Text |
id | pubmed-2614319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-26143192009-01-07 SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators Nikolenko, Volodymyr Watson, Brendon O. Araya, Roberto Woodruff, Alan Peterka, Darcy S. Yuste, Rafael Front Neural Circuits Neuroscience Laser microscopy has generally poor temporal resolution, caused by the serial scanning of each pixel. This is a significant problem for imaging or optically manipulating neural circuits, since neuronal activity is fast. To help surmount this limitation, we have developed a “scanless” microscope that does not contain mechanically moving parts. This microscope uses a diffractive spatial light modulator (SLM) to shape an incoming two-photon laser beam into any arbitrary light pattern. This allows the simultaneous imaging or photostimulation of different regions of a sample with three-dimensional precision. To demonstrate the usefulness of this microscope, we perform two-photon uncaging of glutamate to activate dendritic spines and cortical neurons in brain slices. We also use it to carry out fast (60 Hz) two-photon calcium imaging of action potentials in neuronal populations. Thus, SLM microscopy appears to be a powerful tool for imaging and optically manipulating neurons and neuronal circuits. Moreover, the use of SLMs expands the flexibility of laser microscopy, as it can substitute traditional simple fixed lenses with any calculated lens function. Frontiers Research Foundation 2008-12-19 /pmc/articles/PMC2614319/ /pubmed/19129923 http://dx.doi.org/10.3389/neuro.04.005.2008 Text en Copyright © 2008 Nikolenko, Watson, Araya, Woodruff, Peterka and Yuste. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. |
spellingShingle | Neuroscience Nikolenko, Volodymyr Watson, Brendon O. Araya, Roberto Woodruff, Alan Peterka, Darcy S. Yuste, Rafael SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title | SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title_full | SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title_fullStr | SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title_full_unstemmed | SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title_short | SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators |
title_sort | slm microscopy: scanless two-photon imaging and photostimulation with spatial light modulators |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614319/ https://www.ncbi.nlm.nih.gov/pubmed/19129923 http://dx.doi.org/10.3389/neuro.04.005.2008 |
work_keys_str_mv | AT nikolenkovolodymyr slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators AT watsonbrendono slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators AT arayaroberto slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators AT woodruffalan slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators AT peterkadarcys slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators AT yusterafael slmmicroscopyscanlesstwophotonimagingandphotostimulationwithspatiallightmodulators |