Cargando…
Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip
BACKGROUND: UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cel...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614498/ https://www.ncbi.nlm.nih.gov/pubmed/19032775 http://dx.doi.org/10.1186/gb-2008-9-11-r166 |
_version_ | 1782163240166359040 |
---|---|
author | Arora, Shilpi Wang, Yipeng Jia, Zhenyu Vardar-Sengul, Saynur Munawar, Ayla Doctor, Kutbuddin S Birrer, Michael McClelland, Michael Adamson, Eileen Mercola, Dan |
author_facet | Arora, Shilpi Wang, Yipeng Jia, Zhenyu Vardar-Sengul, Saynur Munawar, Ayla Doctor, Kutbuddin S Birrer, Michael McClelland, Michael Adamson, Eileen Mercola, Dan |
author_sort | Arora, Shilpi |
collection | PubMed |
description | BACKGROUND: UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cells. RESULTS: UV irradiation led to significant binding of 288 gene promoters by Egr1. A major functional subgroup consisted of apoptosis related genes. The largest subgroup of 24 genes belongs to the epidermal growth factor receptor-signal transduction pathway. Egr1 promoter binding had a significant impact on gene expression of target genes. Conventional chromatin immunoprecipitation and quantitative real time PCR were used to validate promoter binding and expression changes. Small interfering RNA experiments were used to demonstrate the specific role of Egr1 in gene regulation. UV stimulation promotes growth arrest and apoptosis of M12 cells and our data clearly show that a downstream target of the epidermal growth factor receptor, namely Egr1, mediates this apoptotic response. Our study also identified numerous previously unknown targets of Egr1. These include FasL, MAX and RRAS2, which may play a role in the apoptotic response/growth arrest. CONCLUSIONS: Our results indicate that M12 cells undergo Egr1-dependent apoptotic response upon UV stimulation and led to the identification of downstream targets of Egr1, which mediate epidermal growth factor receptor function. |
format | Text |
id | pubmed-2614498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26144982009-01-08 Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip Arora, Shilpi Wang, Yipeng Jia, Zhenyu Vardar-Sengul, Saynur Munawar, Ayla Doctor, Kutbuddin S Birrer, Michael McClelland, Michael Adamson, Eileen Mercola, Dan Genome Biol Research BACKGROUND: UV irradiation activates the epidermal growth factor receptor, induces Egr1 expression and promotes apoptosis in a variety of cell types. We examined the hypothesis that Egr1 regulates genes that mediate this process by use of a chip-on-chip protocol in human tumorigenic prostate M12 cells. RESULTS: UV irradiation led to significant binding of 288 gene promoters by Egr1. A major functional subgroup consisted of apoptosis related genes. The largest subgroup of 24 genes belongs to the epidermal growth factor receptor-signal transduction pathway. Egr1 promoter binding had a significant impact on gene expression of target genes. Conventional chromatin immunoprecipitation and quantitative real time PCR were used to validate promoter binding and expression changes. Small interfering RNA experiments were used to demonstrate the specific role of Egr1 in gene regulation. UV stimulation promotes growth arrest and apoptosis of M12 cells and our data clearly show that a downstream target of the epidermal growth factor receptor, namely Egr1, mediates this apoptotic response. Our study also identified numerous previously unknown targets of Egr1. These include FasL, MAX and RRAS2, which may play a role in the apoptotic response/growth arrest. CONCLUSIONS: Our results indicate that M12 cells undergo Egr1-dependent apoptotic response upon UV stimulation and led to the identification of downstream targets of Egr1, which mediate epidermal growth factor receptor function. BioMed Central 2008 2008-11-25 /pmc/articles/PMC2614498/ /pubmed/19032775 http://dx.doi.org/10.1186/gb-2008-9-11-r166 Text en Copyright © 2008 Arora et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Arora, Shilpi Wang, Yipeng Jia, Zhenyu Vardar-Sengul, Saynur Munawar, Ayla Doctor, Kutbuddin S Birrer, Michael McClelland, Michael Adamson, Eileen Mercola, Dan Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title | Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title_full | Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title_fullStr | Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title_full_unstemmed | Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title_short | Egr1 regulates the coordinated expression of numerous EGF receptor target genes as identified by ChIP-on-chip |
title_sort | egr1 regulates the coordinated expression of numerous egf receptor target genes as identified by chip-on-chip |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614498/ https://www.ncbi.nlm.nih.gov/pubmed/19032775 http://dx.doi.org/10.1186/gb-2008-9-11-r166 |
work_keys_str_mv | AT arorashilpi egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT wangyipeng egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT jiazhenyu egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT vardarsengulsaynur egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT munawarayla egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT doctorkutbuddins egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT birrermichael egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT mcclellandmichael egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT adamsoneileen egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip AT mercoladan egr1regulatesthecoordinatedexpressionofnumerousegfreceptortargetgenesasidentifiedbychiponchip |