Cargando…

MetaMine – A tool to detect and analyse gene patterns in their environmental context

BACKGROUND: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities...

Descripción completa

Detalles Bibliográficos
Autores principales: Bohnebeck, Uta, Lombardot, Thierry, Kottmann, Renzo, Glöckner, Frank O
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615450/
https://www.ncbi.nlm.nih.gov/pubmed/18957118
http://dx.doi.org/10.1186/1471-2105-9-459
_version_ 1782163336374255616
author Bohnebeck, Uta
Lombardot, Thierry
Kottmann, Renzo
Glöckner, Frank O
author_facet Bohnebeck, Uta
Lombardot, Thierry
Kottmann, Renzo
Glöckner, Frank O
author_sort Bohnebeck, Uta
collection PubMed
description BACKGROUND: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct genomic neighbourhood, have shown to significantly improve the number of functional assignments. Further functional evidences can be gained by correlating these gene patterns with prevailing environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins by searching for recurrent gene patterns across habitats based on key genes. RESULTS: MetaMine is an interactive data mining tool which enables the detection of gene patterns in an environmental context. The gene pattern search starts with a user defined environmentally interesting key gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase (MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final step a set of common genes present in a defined number of distinct genomes is determined. The gene patterns found are associated with their individual pattern instances describing gene order and directions. They are presented together with information about the sample and the habitat. MetaMine is implemented in Java and provided as a client/server application with a user-friendly graphical user interface. The system was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide oxidation. CONCLUSION: MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input. The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns for further inspection in an ecological context. Prevailing biological processes associated with a key gene can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases demonstrate that meaningful gene patterns can be quickly detected using MetaMine. MetaMine is freely available for academic use from .
format Text
id pubmed-2615450
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26154502009-01-12 MetaMine – A tool to detect and analyse gene patterns in their environmental context Bohnebeck, Uta Lombardot, Thierry Kottmann, Renzo Glöckner, Frank O BMC Bioinformatics Software BACKGROUND: Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct genomic neighbourhood, have shown to significantly improve the number of functional assignments. Further functional evidences can be gained by correlating these gene patterns with prevailing environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins by searching for recurrent gene patterns across habitats based on key genes. RESULTS: MetaMine is an interactive data mining tool which enables the detection of gene patterns in an environmental context. The gene pattern search starts with a user defined environmentally interesting key gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase (MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final step a set of common genes present in a defined number of distinct genomes is determined. The gene patterns found are associated with their individual pattern instances describing gene order and directions. They are presented together with information about the sample and the habitat. MetaMine is implemented in Java and provided as a client/server application with a user-friendly graphical user interface. The system was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide oxidation. CONCLUSION: MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input. The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns for further inspection in an ecological context. Prevailing biological processes associated with a key gene can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases demonstrate that meaningful gene patterns can be quickly detected using MetaMine. MetaMine is freely available for academic use from . BioMed Central 2008-10-28 /pmc/articles/PMC2615450/ /pubmed/18957118 http://dx.doi.org/10.1186/1471-2105-9-459 Text en Copyright © 2008 Bohnebeck et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software
Bohnebeck, Uta
Lombardot, Thierry
Kottmann, Renzo
Glöckner, Frank O
MetaMine – A tool to detect and analyse gene patterns in their environmental context
title MetaMine – A tool to detect and analyse gene patterns in their environmental context
title_full MetaMine – A tool to detect and analyse gene patterns in their environmental context
title_fullStr MetaMine – A tool to detect and analyse gene patterns in their environmental context
title_full_unstemmed MetaMine – A tool to detect and analyse gene patterns in their environmental context
title_short MetaMine – A tool to detect and analyse gene patterns in their environmental context
title_sort metamine – a tool to detect and analyse gene patterns in their environmental context
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615450/
https://www.ncbi.nlm.nih.gov/pubmed/18957118
http://dx.doi.org/10.1186/1471-2105-9-459
work_keys_str_mv AT bohnebeckuta metamineatooltodetectandanalysegenepatternsintheirenvironmentalcontext
AT lombardotthierry metamineatooltodetectandanalysegenepatternsintheirenvironmentalcontext
AT kottmannrenzo metamineatooltodetectandanalysegenepatternsintheirenvironmentalcontext
AT glocknerfranko metamineatooltodetectandanalysegenepatternsintheirenvironmentalcontext