Cargando…

The UA_handle: a versatile submotif in stable RNA architectures(†)

Stable RNAs are modular and hierarchical 3D architectures taking advantage of recurrent structural motifs to form extensive non-covalent tertiary interactions. Sequence and atomic structure analysis has revealed a novel submotif involving a minimal set of five nucleotides, termed the UA_handle motif...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaeger, Luc, Verzemnieks, Erik J., Geary, Cody
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
RNA
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2615604/
https://www.ncbi.nlm.nih.gov/pubmed/19036788
http://dx.doi.org/10.1093/nar/gkn911
Descripción
Sumario:Stable RNAs are modular and hierarchical 3D architectures taking advantage of recurrent structural motifs to form extensive non-covalent tertiary interactions. Sequence and atomic structure analysis has revealed a novel submotif involving a minimal set of five nucleotides, termed the UA_handle motif (5′XU/AN(n)X3′). It consists of a U:A Watson–Crick: Hoogsteen trans base pair stacked over a classic Watson–Crick base pair, and a bulge of one or more nucleotides that can act as a handle for making different types of long-range interactions. This motif is one of the most versatile building blocks identified in stable RNAs. It enters into the composition of numerous recurrent motifs of greater structural complexity such as the T-loop, the 11-nt receptor, the UAA/GAN and the G-ribo motifs. Several structural principles pertaining to RNA motifs are derived from our analysis. A limited set of basic submotifs can account for the formation of most structural motifs uncovered in ribosomal and stable RNAs. Structural motifs can act as structural scaffoldings and be functionally and topologically equivalent despite sequence and structural differences. The sequence network resulting from the structural relationships shared by these RNA motifs can be used as a proto-language for assisting prediction and rational design of RNA tertiary structures.