Cargando…
Chromosome 20q Amplification Regulates in Vitro Response to Kinesin-5 Inhibitor
We identified gene expression signatures predicting responsiveness to a Kinesin-5 (KIF11) inhibitor (Kinesin-5i) in cultured colon tumor cell lines. Genes predicting resistance to Kinesin-5i were enriched for those from chromosome 20q, a region of frequent amplification in a number of tumor types. s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2621078/ https://www.ncbi.nlm.nih.gov/pubmed/19259408 |
Sumario: | We identified gene expression signatures predicting responsiveness to a Kinesin-5 (KIF11) inhibitor (Kinesin-5i) in cultured colon tumor cell lines. Genes predicting resistance to Kinesin-5i were enriched for those from chromosome 20q, a region of frequent amplification in a number of tumor types. siRNAs targeting genes in this chromosomal region identified AURKA, TPX2 and MYBL2 as genes whose disruption enhances response to Kinesin-5i. Taken together, our results show functional interaction between these genes, and suggest that their overexpression is involved in resistance to Kinesin-5i. Furthermore, our results suggest that patients whose tumors overexpress AURKA due to amplification of 20q will more likely resist treatment with Kinesin-5 inhibitor, and that inactivation of AURKA may sensitize these patients to treatment. |
---|