Cargando…
Constructing Tumor Progression Pathways and Biomarker Discovery with Fuzzy Kernel Kmeans and DNA Methylation Data
Constructing pathways of tumor progression and discovering the biomarkers associated with cancer is critical for understanding the molecular basis of the disease and for the establishment of novel chemotherapeutic approaches and in turn improving the clinical efficiency of the drugs. It has recently...
Autores principales: | Liu, Zhenqiu, Guo, Zhongmin, Tan, Ming |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2623296/ https://www.ncbi.nlm.nih.gov/pubmed/19259397 |
Ejemplares similares
-
Fiber Clustering Acceleration With a Modified Kmeans++ Algorithm Using Data Parallelism
por: Goicovich, Isaac, et al.
Publicado: (2021) -
ParaKMeans: Implementation of a parallelized K-means algorithm suitable for general laboratory use
por: Kraj, Piotr, et al.
Publicado: (2008) -
A new Kmeans clustering model and its generalization achieved by joint spectral embedding and rotation
por: Huang, Wenna, et al.
Publicado: (2021) -
The water supply association analysis method in Shenzhen based on kmeans clustering discretization and apriori algorithm
por: Liu, Xin, et al.
Publicado: (2021) -
Adaptive kernel fuzzy clustering for missing data
por: Rodrigues, Anny K. G., et al.
Publicado: (2021)