Cargando…
Non-Negative Matrix Factorization for the Analysis of Complex Gene Expression Data: Identification of Clinically Relevant Tumor Subtypes
Non-negative matrix factorization (NMF) is a relatively new approach to analyze gene expression data that models data by additive combinations of non-negative basis vectors (metagenes). The non-negativity constraint makes sense biologically as genes may either be expressed or not, but never show neg...
Autores principales: | Frigyesi, Attila, Höglund, Mattias |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2623306/ https://www.ncbi.nlm.nih.gov/pubmed/19259414 |
Ejemplares similares
-
Robust assignment of cancer subtypes from expression data using a uni-variate gene expression average as classifier
por: Lauss, Martin, et al.
Publicado: (2010) -
Independent component analysis reveals new and biologically significant structures in micro array data
por: Frigyesi, Attila, et al.
Publicado: (2006) -
Biological determinants of bladder cancer gene expression subtypes
por: Aine, Mattias, et al.
Publicado: (2015) -
Molecular subtyping of Alzheimer’s disease with consensus non-negative matrix factorization
por: Zheng, Chunlei, et al.
Publicado: (2021) -
Biclustering of gene expression data by non-smooth non-negative matrix factorization
por: Carmona-Saez, Pedro, et al.
Publicado: (2006)