Cargando…
Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome
BACKGROUND: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize ne...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2625353/ https://www.ncbi.nlm.nih.gov/pubmed/18986552 http://dx.doi.org/10.1186/1752-0509-2-95 |
_version_ | 1782163432771944448 |
---|---|
author | Presson, Angela P Sobel, Eric M Papp, Jeanette C Suarez, Charlyn J Whistler, Toni Rajeevan, Mangalathu S Vernon, Suzanne D Horvath, Steve |
author_facet | Presson, Angela P Sobel, Eric M Papp, Jeanette C Suarez, Charlyn J Whistler, Toni Rajeevan, Mangalathu S Vernon, Suzanne D Horvath, Steve |
author_sort | Presson, Angela P |
collection | PubMed |
description | BACKGROUND: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome (CFS) data set. RESULTS: We combine WGCNA with genetic marker data to identify a disease-related pathway and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA. Specifically, we present the following IWGCNA approach: 1) construct a co-expression network, 2) identify trait-related modules within the network, 3) use a trait-related genetic marker to prioritize genes within the module, 4) apply an integrated gene screening strategy to identify candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening strategy results in 20 candidate genes. We show that our approach yields biologically interesting genes that function in the same pathway and are causal drivers for their parent module. We use a separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally annotate the candidate gene pathways. CONCLUSION: We show how WGCNA can be combined with genetic marker data to identify disease-related pathways and the causal drivers within them. The systems genetics approach described here can easily be used to generate testable genetic hypotheses in other complex disease studies. |
format | Text |
id | pubmed-2625353 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26253532009-01-14 Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome Presson, Angela P Sobel, Eric M Papp, Jeanette C Suarez, Charlyn J Whistler, Toni Rajeevan, Mangalathu S Vernon, Suzanne D Horvath, Steve BMC Syst Biol Methodology Article BACKGROUND: Systems biologic approaches such as Weighted Gene Co-expression Network Analysis (WGCNA) can effectively integrate gene expression and trait data to identify pathways and candidate biomarkers. Here we show that the additional inclusion of genetic marker data allows one to characterize network relationships as causal or reactive in a chronic fatigue syndrome (CFS) data set. RESULTS: We combine WGCNA with genetic marker data to identify a disease-related pathway and its causal drivers, an analysis which we refer to as "Integrated WGCNA" or IWGCNA. Specifically, we present the following IWGCNA approach: 1) construct a co-expression network, 2) identify trait-related modules within the network, 3) use a trait-related genetic marker to prioritize genes within the module, 4) apply an integrated gene screening strategy to identify candidate genes and 5) carry out causality testing to verify and/or prioritize results. By applying this strategy to a CFS data set consisting of microarray, SNP and clinical trait data, we identify a module of 299 highly correlated genes that is associated with CFS severity. Our integrated gene screening strategy results in 20 candidate genes. We show that our approach yields biologically interesting genes that function in the same pathway and are causal drivers for their parent module. We use a separate data set to replicate findings and use Ingenuity Pathways Analysis software to functionally annotate the candidate gene pathways. CONCLUSION: We show how WGCNA can be combined with genetic marker data to identify disease-related pathways and the causal drivers within them. The systems genetics approach described here can easily be used to generate testable genetic hypotheses in other complex disease studies. BioMed Central 2008-11-06 /pmc/articles/PMC2625353/ /pubmed/18986552 http://dx.doi.org/10.1186/1752-0509-2-95 Text en Copyright © 2008 Presson et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Presson, Angela P Sobel, Eric M Papp, Jeanette C Suarez, Charlyn J Whistler, Toni Rajeevan, Mangalathu S Vernon, Suzanne D Horvath, Steve Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title | Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title_full | Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title_fullStr | Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title_full_unstemmed | Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title_short | Integrated Weighted Gene Co-expression Network Analysis with an Application to Chronic Fatigue Syndrome |
title_sort | integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2625353/ https://www.ncbi.nlm.nih.gov/pubmed/18986552 http://dx.doi.org/10.1186/1752-0509-2-95 |
work_keys_str_mv | AT pressonangelap integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT sobelericm integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT pappjeanettec integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT suarezcharlynj integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT whistlertoni integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT rajeevanmangalathus integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT vernonsuzanned integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome AT horvathsteve integratedweightedgenecoexpressionnetworkanalysiswithanapplicationtochronicfatiguesyndrome |