Cargando…

IL-15 trans-presentation promotes human NK cell development and differentiation in vivo

The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self–major histocompatability complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (...

Descripción completa

Detalles Bibliográficos
Autores principales: Huntington, Nicholas D., Legrand, Nicolas, Alves, Nuno L., Jaron, Barbara, Weijer, Kees, Plet, Ariane, Corcuff, Erwan, Mortier, Erwan, Jacques, Yannick, Spits, Hergen, Di Santo, James P.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626663/
https://www.ncbi.nlm.nih.gov/pubmed/19103877
http://dx.doi.org/10.1084/jem.20082013
Descripción
Sumario:The in vivo requirements for human natural killer (NK) cell development and differentiation into cytotoxic effectors expressing inhibitory receptors for self–major histocompatability complex class I (MHC-I; killer Ig-like receptors [KIRs]) remain undefined. Here, we dissect the role of interleukin (IL)-15 in human NK cell development using Rag2(−/−)γc(−/−) mice transplanted with human hematopoietic stem cells. Human NK cell reconstitution was intrinsically low in this model because of the poor reactivity to mouse IL-15. Although exogenous human IL-15 (hIL-15) alone made little improvement, IL-15 coupled to IL-15 receptor α (IL-15Rα) significantly augmented human NK cells. IL-15–IL-15Rα complexes induced extensive NK cell proliferation and differentiation, resulting in accumulation of CD16(+)KIR(+) NK cells, which was not uniquely dependent on enhanced survival or preferential responsiveness of this subset to IL-15. Human NK cell differentiation in vivo required hIL-15 and progressed in a linear fashion from CD56(hi)CD16(−)KIR(−) to CD56(lo)CD16(+)KIR(−), and finally to CD56(lo)CD16(+)KIR(+). These data provide the first evidence that IL-15 trans-presentation regulates human NK cell homeostasis. Use of hIL-15 receptor agonists generates a robust humanized immune system model to study human NK cells in vivo. IL-15 receptor agonists may provide therapeutic tools to improve NK cell reconstitution after bone marrow transplants, enhance graft versus leukemia effects, and increase the pool of IL-15–responsive cells during immunotherapy strategies.