Cargando…
Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model
OBJECTIVE: To investigate the basic characteristics of degradable gelatin microspheres (GMSs), including their embolic behavior and degradation periods when they are used as embolic materials in the renal arteries of rabbit models. MATERIALS AND METHODS: Based on the GMS particle size, 24 kidneys we...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Korean Radiological Society
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626815/ https://www.ncbi.nlm.nih.gov/pubmed/17923785 http://dx.doi.org/10.3348/kjr.2007.8.5.418 |
_version_ | 1782163481322061824 |
---|---|
author | Ohta, Shinichi Nitta, Norihisa Takahashi, Masashi Murata, Kiyoshi Tabata, Yasuhiko |
author_facet | Ohta, Shinichi Nitta, Norihisa Takahashi, Masashi Murata, Kiyoshi Tabata, Yasuhiko |
author_sort | Ohta, Shinichi |
collection | PubMed |
description | OBJECTIVE: To investigate the basic characteristics of degradable gelatin microspheres (GMSs), including their embolic behavior and degradation periods when they are used as embolic materials in the renal arteries of rabbit models. MATERIALS AND METHODS: Based on the GMS particle size, 24 kidneys were divided into 3 groups of eight kidneys, and each group was embolized with a different GMS particle size (group 1:35-100 µm, group 2: 100-200 µm, and group 3: 200-300 µm). From each group, two rabbits were sacrificed immediately after embolization (day 0), and a pair of rabbits from each group underwent an angiogram and were sacrificed on days 3, 7, and 14, respectively, after embolization. The level of arterial occlusion, the pathological changes in the renal parenchyma, and the degradation of the GMSs were evaluated angiographically and histologically. RESULTS: A follow-up angiogram on days 0, 3, 7, and 14 revealed the presence of wedge-shaped poorly-enhanced areas in the parenchymal phase as seen in all groups. The size of these areas tended to increase with the particle diameter, and persisted up to day 14. On days 3, 7, and 14, parenchymal infarctions were observed histologically in all cases, and this observation corresponded with the parenchyma being supplied by the embolized arteries. GMSs of group 1 mainly reached the interlobular arteries, while those of group 3 mainly reached the interlobar arteries. In all but two cases, the GMSs were identified histologically even on day 14, and sequential degradation was histologically identified in all GMS groups. CONCLUSION: GMSs can be used as degradable embolic materials which can control the level of embolization. |
format | Text |
id | pubmed-2626815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | The Korean Radiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-26268152009-02-17 Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model Ohta, Shinichi Nitta, Norihisa Takahashi, Masashi Murata, Kiyoshi Tabata, Yasuhiko Korean J Radiol Original Article OBJECTIVE: To investigate the basic characteristics of degradable gelatin microspheres (GMSs), including their embolic behavior and degradation periods when they are used as embolic materials in the renal arteries of rabbit models. MATERIALS AND METHODS: Based on the GMS particle size, 24 kidneys were divided into 3 groups of eight kidneys, and each group was embolized with a different GMS particle size (group 1:35-100 µm, group 2: 100-200 µm, and group 3: 200-300 µm). From each group, two rabbits were sacrificed immediately after embolization (day 0), and a pair of rabbits from each group underwent an angiogram and were sacrificed on days 3, 7, and 14, respectively, after embolization. The level of arterial occlusion, the pathological changes in the renal parenchyma, and the degradation of the GMSs were evaluated angiographically and histologically. RESULTS: A follow-up angiogram on days 0, 3, 7, and 14 revealed the presence of wedge-shaped poorly-enhanced areas in the parenchymal phase as seen in all groups. The size of these areas tended to increase with the particle diameter, and persisted up to day 14. On days 3, 7, and 14, parenchymal infarctions were observed histologically in all cases, and this observation corresponded with the parenchyma being supplied by the embolized arteries. GMSs of group 1 mainly reached the interlobular arteries, while those of group 3 mainly reached the interlobar arteries. In all but two cases, the GMSs were identified histologically even on day 14, and sequential degradation was histologically identified in all GMS groups. CONCLUSION: GMSs can be used as degradable embolic materials which can control the level of embolization. The Korean Radiological Society 2007 2007-10 /pmc/articles/PMC2626815/ /pubmed/17923785 http://dx.doi.org/10.3348/kjr.2007.8.5.418 Text en Copyright © 2007 The Korean Radiological Society http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Ohta, Shinichi Nitta, Norihisa Takahashi, Masashi Murata, Kiyoshi Tabata, Yasuhiko Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title | Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title_full | Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title_fullStr | Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title_full_unstemmed | Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title_short | Degradable Gelatin Microspheres as an Embolic Agent: an Experimental Study in a Rabbit Renal Model |
title_sort | degradable gelatin microspheres as an embolic agent: an experimental study in a rabbit renal model |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2626815/ https://www.ncbi.nlm.nih.gov/pubmed/17923785 http://dx.doi.org/10.3348/kjr.2007.8.5.418 |
work_keys_str_mv | AT ohtashinichi degradablegelatinmicrospheresasanembolicagentanexperimentalstudyinarabbitrenalmodel AT nittanorihisa degradablegelatinmicrospheresasanembolicagentanexperimentalstudyinarabbitrenalmodel AT takahashimasashi degradablegelatinmicrospheresasanembolicagentanexperimentalstudyinarabbitrenalmodel AT muratakiyoshi degradablegelatinmicrospheresasanembolicagentanexperimentalstudyinarabbitrenalmodel AT tabatayasuhiko degradablegelatinmicrospheresasanembolicagentanexperimentalstudyinarabbitrenalmodel |