Cargando…
Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding
OBJECTIVE: The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. MATERIALS AND METHODS: Lung nodules were detected in four...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Korean Radiological Society
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627180/ https://www.ncbi.nlm.nih.gov/pubmed/18253070 http://dx.doi.org/10.3348/kjr.2008.9.1.1 |
_version_ | 1782163507276414976 |
---|---|
author | Ozekes, Serhat Osman, Onur Ucan, Osman N. |
author_facet | Ozekes, Serhat Osman, Onur Ucan, Osman N. |
author_sort | Ozekes, Serhat |
collection | PubMed |
description | OBJECTIVE: The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. MATERIALS AND METHODS: Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. RESULTS: The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. CONCLUSION: Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. |
format | Text |
id | pubmed-2627180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | The Korean Radiological Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-26271802009-02-17 Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding Ozekes, Serhat Osman, Onur Ucan, Osman N. Korean J Radiol Original Article OBJECTIVE: The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. MATERIALS AND METHODS: Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. RESULTS: The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. CONCLUSION: Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. The Korean Radiological Society 2008 2008-02-20 /pmc/articles/PMC2627180/ /pubmed/18253070 http://dx.doi.org/10.3348/kjr.2008.9.1.1 Text en Copyright © 2008 The Korean Radiological Society http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Ozekes, Serhat Osman, Onur Ucan, Osman N. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title | Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title_full | Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title_fullStr | Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title_full_unstemmed | Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title_short | Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding |
title_sort | nodule detection in a lung region that's segmented with using genetic cellular neural networks and 3d template matching with fuzzy rule based thresholding |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627180/ https://www.ncbi.nlm.nih.gov/pubmed/18253070 http://dx.doi.org/10.3348/kjr.2008.9.1.1 |
work_keys_str_mv | AT ozekesserhat noduledetectioninalungregionthatssegmentedwithusinggeneticcellularneuralnetworksand3dtemplatematchingwithfuzzyrulebasedthresholding AT osmanonur noduledetectioninalungregionthatssegmentedwithusinggeneticcellularneuralnetworksand3dtemplatematchingwithfuzzyrulebasedthresholding AT ucanosmann noduledetectioninalungregionthatssegmentedwithusinggeneticcellularneuralnetworksand3dtemplatematchingwithfuzzyrulebasedthresholding |