Cargando…
Using laboratory-based surveillance data for prevention: an algorithm for detecting Salmonella outbreaks.
By applying cumulative sums (CUSUM), a quality control method commonly used in manufacturing, we constructed a process for detecting unusual clusters among reported laboratory isolates of disease-causing organisms. We developed a computer algorithm based on minimal adjustments to the CUSUM method, w...
Autores principales: | Hutwagner, L C, Maloney, E K, Bean, N H, Slutsker, L, Martin, S M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Centers for Disease Control and Prevention
1997
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627626/ https://www.ncbi.nlm.nih.gov/pubmed/9284390 |
Ejemplares similares
-
Data management issues for emerging diseases and new tools for managing surveillance and laboratory data.
por: Martin, S M, et al.
Publicado: (1995) -
Comparing Aberration Detection Methods with Simulated Data
por: Hutwagner, Lori, et al.
Publicado: (2005) -
An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems
por: Noufaily, Angela, et al.
Publicado: (2013) -
Supervised learning using routine surveillance data improves outbreak detection of Salmonella and Campylobacter infections in Germany
por: Zacher, Benedikt, et al.
Publicado: (2022) -
An Integrated System for Enteric Disease Surveillance and Outbreak
Detection
por: Soto, Kristen, et al.
Publicado: (2015)