Cargando…
Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking
OBJECTIVE— Obesity and diabetes are characterized by the incapacity to use fat as fuel. We hypothesized that this reduced fat oxidation is secondary to a sedentary lifestyle. RESEARCH DESIGN AND METHODS— We investigated the effect of a 2-month bed rest on the dietary oleate and palmitate trafficking...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628610/ https://www.ncbi.nlm.nih.gov/pubmed/19017764 http://dx.doi.org/10.2337/db08-0263 |
_version_ | 1782163708844179456 |
---|---|
author | Bergouignan, Audrey Trudel, Guy Simon, Chantal Chopard, Angèle Schoeller, Dale A. Momken, Iman Votruba, Susanne B. Desage, Michel Burdge, Graham C. Gauquelin-Koch, Guillemette Normand, Sylvie Blanc, Stéphane |
author_facet | Bergouignan, Audrey Trudel, Guy Simon, Chantal Chopard, Angèle Schoeller, Dale A. Momken, Iman Votruba, Susanne B. Desage, Michel Burdge, Graham C. Gauquelin-Koch, Guillemette Normand, Sylvie Blanc, Stéphane |
author_sort | Bergouignan, Audrey |
collection | PubMed |
description | OBJECTIVE— Obesity and diabetes are characterized by the incapacity to use fat as fuel. We hypothesized that this reduced fat oxidation is secondary to a sedentary lifestyle. RESEARCH DESIGN AND METHODS— We investigated the effect of a 2-month bed rest on the dietary oleate and palmitate trafficking in lean women (control group, n = 8) and the effect of concomitant resistance/aerobic exercise training as a countermeasure (exercise group, n = 8). Trafficking of stable isotope–labeled dietary fats was combined with muscle gene expression and magnetic resonance imaging–derived muscle fat content analyses. RESULTS— In the control group, bed rest increased the cumulative [1-(13)C]oleate and [d(31)]palmitate appearance in triglycerides (37%, P = 0.009, and 34%, P = 0.016, respectively) and nonesterified fatty acids (NEFAs) (37%, P = 0.038, and 38%, P = 0.002) and decreased muscle lipoprotein lipase (P = 0.043) and fatty acid translocase CD36 (P = 0.043) mRNA expressions. Plasma NEFA-to-triglyceride ratios for [1-(13)C]oleate and [d(31)]palmitate remained unchanged, suggesting that the same proportion of tracers enters the peripheral tissues after bed rest. Bed rest did not affect [1-(13)C]oleate oxidation but decreased [d(31)]palmitate oxidation by −8.2 ± 4.9% (P < 0.0001). Despite a decreased spontaneous energy intake and a reduction of 1.9 ± 0.3 kg (P = 0.001) in fat mass, exercise training did not mitigate these alterations but partially maintained fat-free mass, insulin sensitivity, and total lipid oxidation in fasting and fed states. In both groups, muscle fat content increased by 2.7% after bed rest and negatively correlated with the reduction in [d(31)]palmitate oxidation (r(2) = 0.48, P = 0.003). CONCLUSIONS— While saturated and monounsaturated fats have similar plasma trafficking and clearance, physical inactivity affects the partitioning of saturated fats toward storage, likely leading to an accumulation of palmitate in muscle fat. |
format | Text |
id | pubmed-2628610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-26286102010-02-01 Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking Bergouignan, Audrey Trudel, Guy Simon, Chantal Chopard, Angèle Schoeller, Dale A. Momken, Iman Votruba, Susanne B. Desage, Michel Burdge, Graham C. Gauquelin-Koch, Guillemette Normand, Sylvie Blanc, Stéphane Diabetes Metabolism OBJECTIVE— Obesity and diabetes are characterized by the incapacity to use fat as fuel. We hypothesized that this reduced fat oxidation is secondary to a sedentary lifestyle. RESEARCH DESIGN AND METHODS— We investigated the effect of a 2-month bed rest on the dietary oleate and palmitate trafficking in lean women (control group, n = 8) and the effect of concomitant resistance/aerobic exercise training as a countermeasure (exercise group, n = 8). Trafficking of stable isotope–labeled dietary fats was combined with muscle gene expression and magnetic resonance imaging–derived muscle fat content analyses. RESULTS— In the control group, bed rest increased the cumulative [1-(13)C]oleate and [d(31)]palmitate appearance in triglycerides (37%, P = 0.009, and 34%, P = 0.016, respectively) and nonesterified fatty acids (NEFAs) (37%, P = 0.038, and 38%, P = 0.002) and decreased muscle lipoprotein lipase (P = 0.043) and fatty acid translocase CD36 (P = 0.043) mRNA expressions. Plasma NEFA-to-triglyceride ratios for [1-(13)C]oleate and [d(31)]palmitate remained unchanged, suggesting that the same proportion of tracers enters the peripheral tissues after bed rest. Bed rest did not affect [1-(13)C]oleate oxidation but decreased [d(31)]palmitate oxidation by −8.2 ± 4.9% (P < 0.0001). Despite a decreased spontaneous energy intake and a reduction of 1.9 ± 0.3 kg (P = 0.001) in fat mass, exercise training did not mitigate these alterations but partially maintained fat-free mass, insulin sensitivity, and total lipid oxidation in fasting and fed states. In both groups, muscle fat content increased by 2.7% after bed rest and negatively correlated with the reduction in [d(31)]palmitate oxidation (r(2) = 0.48, P = 0.003). CONCLUSIONS— While saturated and monounsaturated fats have similar plasma trafficking and clearance, physical inactivity affects the partitioning of saturated fats toward storage, likely leading to an accumulation of palmitate in muscle fat. American Diabetes Association 2009-02 /pmc/articles/PMC2628610/ /pubmed/19017764 http://dx.doi.org/10.2337/db08-0263 Text en Copyright © 2009, American Diabetes Association Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Metabolism Bergouignan, Audrey Trudel, Guy Simon, Chantal Chopard, Angèle Schoeller, Dale A. Momken, Iman Votruba, Susanne B. Desage, Michel Burdge, Graham C. Gauquelin-Koch, Guillemette Normand, Sylvie Blanc, Stéphane Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title | Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title_full | Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title_fullStr | Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title_full_unstemmed | Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title_short | Physical Inactivity Differentially Alters Dietary Oleate and Palmitate Trafficking |
title_sort | physical inactivity differentially alters dietary oleate and palmitate trafficking |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628610/ https://www.ncbi.nlm.nih.gov/pubmed/19017764 http://dx.doi.org/10.2337/db08-0263 |
work_keys_str_mv | AT bergouignanaudrey physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT trudelguy physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT simonchantal physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT chopardangele physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT schoellerdalea physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT momkeniman physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT votrubasusanneb physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT desagemichel physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT burdgegrahamc physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT gauquelinkochguillemette physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT normandsylvie physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking AT blancstephane physicalinactivitydifferentiallyaltersdietaryoleateandpalmitatetrafficking |