Cargando…
A new concept for cancer therapy: out-competing the aggressor
Cancer expansion depends on host organ conditions that permit growth. Since such microenvironmental nourishment is limited we argue here that an autologous, therapeutically engineered and faster metabolizing cell strain could potentially out-compete native cancer cell populations for available resou...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628876/ https://www.ncbi.nlm.nih.gov/pubmed/19077276 http://dx.doi.org/10.1186/1475-2867-8-19 |
_version_ | 1782163741583867904 |
---|---|
author | Deisboeck, Thomas S Wang, Zhihui |
author_facet | Deisboeck, Thomas S Wang, Zhihui |
author_sort | Deisboeck, Thomas S |
collection | PubMed |
description | Cancer expansion depends on host organ conditions that permit growth. Since such microenvironmental nourishment is limited we argue here that an autologous, therapeutically engineered and faster metabolizing cell strain could potentially out-compete native cancer cell populations for available resources which in turn should contain further cancer growth. This hypothesis aims on turning cancer progression, and its microenvironmental dependency, into a therapeutic opportunity. To illustrate our concept, we developed a three-dimensional computational model that allowed us to investigate the growth dynamics of native tumor cells mixed with genetically engineered cells that exhibit a higher proliferation rate. The simulation results confirm in silico efficacy of such therapeutic cells to combating cancer cells on site in that they can indeed control tumor growth once their proliferation rate exceeds a certain level. While intriguing from a theoretical perspective, this bold, innovative ecology-driven concept bears some significant challenges that warrant critical discussion in the community for further refinement. |
format | Text |
id | pubmed-2628876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26288762009-01-21 A new concept for cancer therapy: out-competing the aggressor Deisboeck, Thomas S Wang, Zhihui Cancer Cell Int Hypothesis Cancer expansion depends on host organ conditions that permit growth. Since such microenvironmental nourishment is limited we argue here that an autologous, therapeutically engineered and faster metabolizing cell strain could potentially out-compete native cancer cell populations for available resources which in turn should contain further cancer growth. This hypothesis aims on turning cancer progression, and its microenvironmental dependency, into a therapeutic opportunity. To illustrate our concept, we developed a three-dimensional computational model that allowed us to investigate the growth dynamics of native tumor cells mixed with genetically engineered cells that exhibit a higher proliferation rate. The simulation results confirm in silico efficacy of such therapeutic cells to combating cancer cells on site in that they can indeed control tumor growth once their proliferation rate exceeds a certain level. While intriguing from a theoretical perspective, this bold, innovative ecology-driven concept bears some significant challenges that warrant critical discussion in the community for further refinement. BioMed Central 2008-12-12 /pmc/articles/PMC2628876/ /pubmed/19077276 http://dx.doi.org/10.1186/1475-2867-8-19 Text en Copyright © 2008 Deisboeck and Wang; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Hypothesis Deisboeck, Thomas S Wang, Zhihui A new concept for cancer therapy: out-competing the aggressor |
title | A new concept for cancer therapy: out-competing the aggressor |
title_full | A new concept for cancer therapy: out-competing the aggressor |
title_fullStr | A new concept for cancer therapy: out-competing the aggressor |
title_full_unstemmed | A new concept for cancer therapy: out-competing the aggressor |
title_short | A new concept for cancer therapy: out-competing the aggressor |
title_sort | new concept for cancer therapy: out-competing the aggressor |
topic | Hypothesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628876/ https://www.ncbi.nlm.nih.gov/pubmed/19077276 http://dx.doi.org/10.1186/1475-2867-8-19 |
work_keys_str_mv | AT deisboeckthomass anewconceptforcancertherapyoutcompetingtheaggressor AT wangzhihui anewconceptforcancertherapyoutcompetingtheaggressor AT deisboeckthomass newconceptforcancertherapyoutcompetingtheaggressor AT wangzhihui newconceptforcancertherapyoutcompetingtheaggressor |