Cargando…
Bayesian optimal discovery procedure for simultaneous significance testing
BACKGROUND: In high throughput screening, such as differential gene expression screening, drug sensitivity screening, and genome-wide RNAi screening, tens of thousands of tests need to be conducted simultaneously. However, the number of replicate measurements per test is extremely small, rarely exce...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628883/ https://www.ncbi.nlm.nih.gov/pubmed/19126217 http://dx.doi.org/10.1186/1471-2105-10-5 |
_version_ | 1782163743293046784 |
---|---|
author | Cao, Jing Xie, Xian-Jin Zhang, Song Whitehurst, Angelique White, Michael A |
author_facet | Cao, Jing Xie, Xian-Jin Zhang, Song Whitehurst, Angelique White, Michael A |
author_sort | Cao, Jing |
collection | PubMed |
description | BACKGROUND: In high throughput screening, such as differential gene expression screening, drug sensitivity screening, and genome-wide RNAi screening, tens of thousands of tests need to be conducted simultaneously. However, the number of replicate measurements per test is extremely small, rarely exceeding 3. Several current approaches demonstrate that test statistics with shrinking variance estimates have more power over the traditional t statistic. RESULTS: We propose a Bayesian hierarchical model to incorporate the shrinkage concept by introducing a mixture structure on variance components. The estimates from the Bayesian model are utilized in the optimal discovery procedure (ODP) proposed by Storey in 2007, which was shown to have optimal performance in multiple significance tests. We compared the performance of the Bayesian ODP with several competing test statistics. CONCLUSION: We have conducted simulation studies with 2 to 6 replicates per gene. We have also included test results from two real datasets. The Bayesian ODP outperforms the other methods in our study, including the original ODP. The advantage of the Bayesian ODP becomes more significant when there are few replicates per test. The improvement over the original ODP is based on the fact that Bayesian model borrows strength across genes in estimating unknown parameters. The proposed approach is efficient in computation due to the conjugate structure of the Bayesian model. The R code (see Additional file 1) to calculate the Bayesian ODP is provided. |
format | Text |
id | pubmed-2628883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26288832009-01-21 Bayesian optimal discovery procedure for simultaneous significance testing Cao, Jing Xie, Xian-Jin Zhang, Song Whitehurst, Angelique White, Michael A BMC Bioinformatics Methodology Article BACKGROUND: In high throughput screening, such as differential gene expression screening, drug sensitivity screening, and genome-wide RNAi screening, tens of thousands of tests need to be conducted simultaneously. However, the number of replicate measurements per test is extremely small, rarely exceeding 3. Several current approaches demonstrate that test statistics with shrinking variance estimates have more power over the traditional t statistic. RESULTS: We propose a Bayesian hierarchical model to incorporate the shrinkage concept by introducing a mixture structure on variance components. The estimates from the Bayesian model are utilized in the optimal discovery procedure (ODP) proposed by Storey in 2007, which was shown to have optimal performance in multiple significance tests. We compared the performance of the Bayesian ODP with several competing test statistics. CONCLUSION: We have conducted simulation studies with 2 to 6 replicates per gene. We have also included test results from two real datasets. The Bayesian ODP outperforms the other methods in our study, including the original ODP. The advantage of the Bayesian ODP becomes more significant when there are few replicates per test. The improvement over the original ODP is based on the fact that Bayesian model borrows strength across genes in estimating unknown parameters. The proposed approach is efficient in computation due to the conjugate structure of the Bayesian model. The R code (see Additional file 1) to calculate the Bayesian ODP is provided. BioMed Central 2009-01-06 /pmc/articles/PMC2628883/ /pubmed/19126217 http://dx.doi.org/10.1186/1471-2105-10-5 Text en Copyright © 2009 Cao et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Cao, Jing Xie, Xian-Jin Zhang, Song Whitehurst, Angelique White, Michael A Bayesian optimal discovery procedure for simultaneous significance testing |
title | Bayesian optimal discovery procedure for simultaneous significance testing |
title_full | Bayesian optimal discovery procedure for simultaneous significance testing |
title_fullStr | Bayesian optimal discovery procedure for simultaneous significance testing |
title_full_unstemmed | Bayesian optimal discovery procedure for simultaneous significance testing |
title_short | Bayesian optimal discovery procedure for simultaneous significance testing |
title_sort | bayesian optimal discovery procedure for simultaneous significance testing |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628883/ https://www.ncbi.nlm.nih.gov/pubmed/19126217 http://dx.doi.org/10.1186/1471-2105-10-5 |
work_keys_str_mv | AT caojing bayesianoptimaldiscoveryprocedureforsimultaneoussignificancetesting AT xiexianjin bayesianoptimaldiscoveryprocedureforsimultaneoussignificancetesting AT zhangsong bayesianoptimaldiscoveryprocedureforsimultaneoussignificancetesting AT whitehurstangelique bayesianoptimaldiscoveryprocedureforsimultaneoussignificancetesting AT whitemichaela bayesianoptimaldiscoveryprocedureforsimultaneoussignificancetesting |