Cargando…
Clustering cancer gene expression data: a comparative study
BACKGROUND: The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a...
Autores principales: | de Souto, Marcilio CP, Costa, Ivan G, de Araujo, Daniel SA, Ludermir, Teresa B, Schliep, Alexander |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632677/ https://www.ncbi.nlm.nih.gov/pubmed/19038021 http://dx.doi.org/10.1186/1471-2105-9-497 |
Ejemplares similares
-
Impact of missing data imputation methods on gene expression clustering and classification
por: de Souto, Marcilio CP, et al.
Publicado: (2015) -
PyMix - The Python mixture package - a tool for clustering of heterogeneous biological data
por: Georgi, Benjamin, et al.
Publicado: (2010) -
Gene expression trees in lymphoid development
por: Costa, Ivan G, et al.
Publicado: (2007) -
Semi-supervised learning for the identification of syn-expressed genes from fused microarray and in situ image data
por: Costa, Ivan G, et al.
Publicado: (2007) -
Inferring differentiation pathways from gene expression
por: Costa, Ivan G., et al.
Publicado: (2008)