Cargando…

XLF-Cernunnos promotes DNA ligase IV–XRCC4 re-adenylation following ligation

XLF-Cernunnos (XLF) is a component of the DNA ligase IV–XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylate...

Descripción completa

Detalles Bibliográficos
Autores principales: Riballo, Enriqueta, Woodbine, Lisa, Stiff, Thomas, Walker, Sarah A., Goodarzi, Aaron A., Jeggo, Penny A.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632933/
https://www.ncbi.nlm.nih.gov/pubmed/19056826
http://dx.doi.org/10.1093/nar/gkn957
Descripción
Sumario:XLF-Cernunnos (XLF) is a component of the DNA ligase IV–XRCC4 (LX) complex, which functions during DNA non-homologous end joining (NHEJ). Here, we use biochemical and cellular approaches to probe the impact of XLF on LX activities. We show that XLF stimulates adenylation of LX complexes de-adenylated by pyrophosphate or following LX decharging during ligation. XLF enhances LX ligation activity in an ATP-independent and dependent manner. ATP-independent stimulation can be attributed to enhanced end-bridging. Whilst ATP alone fails to stimulate LX ligation activity, addition of XLF and ATP promotes ligation in a manner consistent with XLF-stimulated readenylation linked to ligation. We show that XLF is a weakly bound partner of the tightly associated LX complex and, unlike XRCC4, is dispensable for LX stability. 2BN cells, which have little, if any, residual XLF activity, show a 3-fold decreased ability to repair DNA double strand breaks covering a range of complexity. These findings strongly suggest that XLF is not essential for NHEJ but promotes LX adenylation and hence ligation. We propose a model in which XLF, by in situ recharging DNA ligase IV after the first ligation event, promotes double stranded ligation by a single LX complex.