Cargando…
Controlled-Release Carbamazepine Matrix Granules and Tablets Comprising Lipophilic and Hydrophilic Components
The objective of this study was to investigate the effect of lipophilic (Compritol® 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of gra...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Informa Healthcare
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637677/ https://www.ncbi.nlm.nih.gov/pubmed/19555310 http://dx.doi.org/10.1080/10717540802518157 |
Sumario: | The objective of this study was to investigate the effect of lipophilic (Compritol® 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were compared to those of Tegretol® CR tablets and the mean dissolution time (MDT), dissolution efficiency (DE%), and similarity factor (f2 factor) were calculated. It was found that increase in the concentration of HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to Case II by the increase of HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceleration of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the tablets. These results suggest that wet granulation followed by compression could be a suitable method to formulate sustained release CBZ tablets. |
---|