Cargando…
Accurate and robust gene selection for disease classification using a simple statistic
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classifica...
Autores principales: | Mutsubayashi, Hikaru, Aso, Seiichiro, Nagashima, Tomomasa, Okada, Yoshifumi |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637954/ https://www.ncbi.nlm.nih.gov/pubmed/19238233 |
Ejemplares similares
-
Robust consensus clustering for identification of expressed genes linked to malignancy of human colorectal carcinoma
por: Wahyudi, Gatot, et al.
Publicado: (2011) -
Entropy based sub-dimensional evaluation and selection method for DNA microarray data classification
por: Wang, Yi, et al.
Publicado: (2008) -
An efficient method for statistical significance calculation of transcription factor binding sites
por: Qian, Ziliang, et al.
Publicado: (2007) -
An adaptive alpha spending algorithm improves the power of statistical inference in microarray data analysis
por: Brand, Jacob P L, et al.
Publicado: (2007) -
On relationship of Z-curve and Fourier approaches for DNA coding sequence classification
por: Law, Ngai-Fong, et al.
Publicado: (2006)