Cargando…
Knowledge-based gene expression classification via matrix factorization
Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory fea...
Autores principales: | Schachtner, R., Lutter, D., Knollmüller, P., Tomé, A. M., Theis, F. J., Schmitz, G., Stetter, M., Vilda, P. Gómez, Lang, E. W. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2638868/ https://www.ncbi.nlm.nih.gov/pubmed/18535085 http://dx.doi.org/10.1093/bioinformatics/btn245 |
Ejemplares similares
-
Analyzing M-CSF dependent monocyte/macrophage differentiation: Expression modes and meta-modes derived from an independent component analysis
por: Lutter, Dominik, et al.
Publicado: (2008) -
Bayesian Reasoning with Trained Neural Networks
por: Knollmüller, Jakob, et al.
Publicado: (2021) -
Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects
por: Lutter, Dominik, et al.
Publicado: (2010) -
Knowledge transfer via classification rules using functional mapping for integrative modeling of gene expression data
por: Ogoe, Henry A., et al.
Publicado: (2015) -
Knowledge-based matrix factorization temporally resolves the cellular responses to IL-6 stimulation
por: Kowarsch, Andreas, et al.
Publicado: (2010)