Cargando…
Gene–disease relationship discovery based on model-driven data integration and database view definition
Motivation: Computational methods are widely used to discover gene–disease relationships hidden in vast masses of available genomic and post-genomic data. In most current methods, a similarity measure is calculated between gene annotations and known disease genes or disease descriptions. However, mo...
Autores principales: | Yilmaz, S., Jonveaux, P., Bicep, C., Pierron, L., Smaïl-Tabbone, M., Devignes, M.D. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639000/ https://www.ncbi.nlm.nih.gov/pubmed/19042916 http://dx.doi.org/10.1093/bioinformatics/btn612 |
Ejemplares similares
-
Ontology-guided data preparation for discovering genotype-phenotype relationships
por: Coulet, Adrien, et al.
Publicado: (2008) -
Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery
por: Caradec, Thibault, et al.
Publicado: (2014) -
Integrative relational machine-learning for understanding drug side-effect profiles
por: Bresso, Emmanuel, et al.
Publicado: (2013) -
IntelliGO: a new vector-based semantic similarity measure including annotation origin
por: Benabderrahmane, Sidahmed, et al.
Publicado: (2010) -
KBDOCK 2013: a spatial classification of 3D protein domain family interactions
por: Ghoorah, Anisah W., et al.
Publicado: (2014)