Cargando…
A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips
BACKGROUND: In gene expression studies a key role is played by the so called "pre-processing", a series of steps designed to extract the signal and account for the sources of variability due to the technology used rather than to biological differences between the RNA samples. At the moment...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639433/ https://www.ncbi.nlm.nih.gov/pubmed/19046434 http://dx.doi.org/10.1186/1471-2105-9-512 |
_version_ | 1782164463644835840 |
---|---|
author | Blangiardo, Marta Richardson, Sylvia |
author_facet | Blangiardo, Marta Richardson, Sylvia |
author_sort | Blangiardo, Marta |
collection | PubMed |
description | BACKGROUND: In gene expression studies a key role is played by the so called "pre-processing", a series of steps designed to extract the signal and account for the sources of variability due to the technology used rather than to biological differences between the RNA samples. At the moment there is no commonly agreed gold standard pre-processing method and each researcher has the responsibility to choose one method, incurring the risk of false positive and false negative features arising from the particular method chosen. RESULTS: We propose a Bayesian calibration model that makes use of the information provided by several pre-processing methods and we show that this model gives a better assessment of the 'true' unknown differential expression between two conditions. We demonstrate how to estimate the posterior distribution of the differential expression values of interest from the combined information. CONCLUSION: On simulated data and on the spike-in Latin Square dataset from Affymetrix the Bayesian calibration model proves to have more power than each pre-processing method. Its biological interest is demonstrated through an experimental example on publicly available data. |
format | Text |
id | pubmed-2639433 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26394332009-02-11 A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips Blangiardo, Marta Richardson, Sylvia BMC Bioinformatics Methodology Article BACKGROUND: In gene expression studies a key role is played by the so called "pre-processing", a series of steps designed to extract the signal and account for the sources of variability due to the technology used rather than to biological differences between the RNA samples. At the moment there is no commonly agreed gold standard pre-processing method and each researcher has the responsibility to choose one method, incurring the risk of false positive and false negative features arising from the particular method chosen. RESULTS: We propose a Bayesian calibration model that makes use of the information provided by several pre-processing methods and we show that this model gives a better assessment of the 'true' unknown differential expression between two conditions. We demonstrate how to estimate the posterior distribution of the differential expression values of interest from the combined information. CONCLUSION: On simulated data and on the spike-in Latin Square dataset from Affymetrix the Bayesian calibration model proves to have more power than each pre-processing method. Its biological interest is demonstrated through an experimental example on publicly available data. BioMed Central 2008-12-01 /pmc/articles/PMC2639433/ /pubmed/19046434 http://dx.doi.org/10.1186/1471-2105-9-512 Text en Copyright © 2008 Blangiardo and Richardson; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Blangiardo, Marta Richardson, Sylvia A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title | A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title_full | A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title_fullStr | A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title_full_unstemmed | A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title_short | A Bayesian calibration model for combining different pre-processing methods in Affymetrix chips |
title_sort | bayesian calibration model for combining different pre-processing methods in affymetrix chips |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639433/ https://www.ncbi.nlm.nih.gov/pubmed/19046434 http://dx.doi.org/10.1186/1471-2105-9-512 |
work_keys_str_mv | AT blangiardomarta abayesiancalibrationmodelforcombiningdifferentpreprocessingmethodsinaffymetrixchips AT richardsonsylvia abayesiancalibrationmodelforcombiningdifferentpreprocessingmethodsinaffymetrixchips AT blangiardomarta bayesiancalibrationmodelforcombiningdifferentpreprocessingmethodsinaffymetrixchips AT richardsonsylvia bayesiancalibrationmodelforcombiningdifferentpreprocessingmethodsinaffymetrixchips |